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WPS €00

Weighted Projective Space

The weighted projective space over K(= F,) with weights w = (wy, .. ., Wm) € N";fl is the
quotient

IF)(VV07 0009 Wm) = (]I<m+l\{0})/N
under the action of K* defined by A - (xg,...,xm) = (A\"xq, ..., A\ x,,) for A € K*.

P(1,1,...,1) is the classical projective space P™.
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WPS €00
Weighted Projective Space

The weighted projective space over K(=Fq) with weights w = (wo, ..., w,,) € NZF! is the
quotient

P(wo, . .., wm) = (K™1\{0})/~
under the action of K* defined by A - (xg,...,xm) = (A\"xq, ..., A\ x,,) for A € K*.

P(1,1,...,1) is the classical projective space P™.

P(cwo, cwy, ..., cwp) =~ P(wy, wy, ..., Wp) P(wo, cwy, ..., W) =P(wo, wy, ..., Wp).
Delorme

P(wo, w1) ~ P(wp,1) ~ P(1,1) = P P(1, wy, wse) ~ P(1, wy, wj) with gcd(wy, wy) = 1.

W.lo.g w= (wo,...,wn) is well-formed: gcd(w) =1 and ged(wo, ..., W;,..., wn) = 1 Vi.

Codes on WPS Jade Nardi 1/12



WPS 000

(Rational) points of weighted projective spaces over K =

Recall: (x0,- -, Xm)~X- (X0, -, Xm) = (A\"°x0, ..., A\ xn) for A € K*

A point P in P(wp, ..., wy) is an equivalence class [xp : - -- @ x;] for ~.
A point P =[xg: " : Xn] € P(wo,..., wn) is Fgrational if (x7,...,x%)~(x0,...,Xm). We write
P(wg, ..., wn)(Fq) for the set of Fy-rational points.
An Fg-rational point P € P(wp, ..., wny)(Fq) admits g — 1 representatives in ]FZ7+1.
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WPS 000

(Rational) points of weighted projective spaces over K =

Recall: (x0,- -, Xm)~X- (X0, -, Xm) = (A\"°x0, ..., A\ xn) for A € K*

A point P in P(wp, ..., wy) is an equivalence class [xp : - -- @ x;] for ~.
A point P =[xg: " : Xn] € P(wo,..., wn) is Fgrational if (x7,...,x%)~(x0,...,Xm). We write
P(wg, ..., wn)(Fq) for the set of Fy-rational points.
An Fg-rational point P € P(wp, ..., wny)(Fq) admits g — 1 representatives in ]FZ’H.
For P(1,...,1) = P, we choose the representatives of P(wy, ..., wn)(Fq) as follows:

(L, x1,...,%m), (0,1, x0,...,%m), ..., (0,...,0,1) with x; € Fy,.

qm 4gm—1 +... +1

For P(wp, ..., wn), we can do the same if gcd(qg — 1, w;) = 1 for every i € {0,..., m — 1}.

In P(1,2,3) over F3, 2-(0,1,1) = (0,22,23) = (0,1,2). So (0,1,1) ~ (0,1,2).
A Not every rational point of the line x; = 0 can be represented by a triple of the form (0,1, x>).
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WPS OO®

Why you may be interested in weighted projective spaces: a non-exhaustive list

WPS are examples of toric varieties.

WPS have finite quotient singularities.

Classification of surfaces: Any surface with K? = 1 is a weighted complete intersection of
type (6,6) in P(1,2,2,3,3). Catanese (1970)
Invariants and moduli spaces:

® The moduli spaces of elliptic curves up to isomorphism over K (with char(K) ¢ {2,3}) is

My ={(a:b:A): A =-16(4a" +27b°)} < P(2,3,6).
~[P(1,2,3)

® Genus-2 curves up to isomorphism over K (with char(K) # 2) can be characterized by Igusa
invariants (J2, Ja, Je, J10) € P(2,4,6,10) with J1 # 0.

~P(1,2,3,5)
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Linear Codes €00
Weighted Projective Reed-Muller code

A linear code C over Fq of length n is a vector subspace Fj. We note k its dimension.
The weight of a word x € Fy is given by wt(x) = #{i € {1,...,n}, x; # 0}.
The minimum distance of C is defined by d = min{wt(c) | c € C, ¢ # 0}.
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Linear Codes €00

Weighted Projective Reed- MuIIer code

A linear code C over Fq of length n is a vector subspace Fj. We note k its dimension.
The weight of a word x € Fy is given by wt(x) = #{i € {1,...,n}, x; # 0}.
The minimum distance of C is defined by d = min{wt(c) | c € C, ¢ # 0}.
Fix w = (wp,..., wn) € NZTL
The ring S = Fy[xo, - - xm] is graded by deg,, (]_[f"O xM) = agwo + -+ + am Wi
Then $ = @y Sa where Sq=Span{M =[] x7 : deg,, (M) = d}.

Definition: Denumerant

For d € N, we define the denumerant of d w.r.t. to w as = dim Sy = den(d; w)
den(d; w) = # {(a0,...,am) € N"*! 1 wpap + - + wpam = d} .
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Linear Codes 800 Vanish o

Welghted Projective Reed- MuIIer code

A linear code C over Fq of length n is a vector subspace Fj. We note k its dimension.
The weight of a word x € Fy is given by wt(x) = #{i € {1,...,n}, x; # 0}.
The minimum distance of C is defined by d = min{wt(c) | c € C, ¢ # 0}.
Fix w = (wp,...,wp) € Ngrl.
The ring S = Fy[xo, ..., xm] is graded by deg,, (1—[710 xM) = agwo + -+ + am Wi
Then $ = @y Sa where Sq=Span{M =[] x7 : deg,, (M) = d}.

Definition: Denumerant

For d € N, we define the denumerant of d w.r.t. to w as = dim Sy = den(d; w)
den(d; w) = # {(a0,...,am) € N"*! 1 wpap + - + wpam = d} .

Definition: Weighted Projective Reed-Muller (WPRM) code of w-degree d

Sd —> FZ
f - (f(P),...,f(Pn))
The weighted projective Reed-Muller code of w-degree d WPRMy4(w) is the image of evy.

Set {P1,...,Pn} =P(wy,..., wy)(Fy) and define evy : {
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Linear Codes 000

Evaluating a polynomial at a point of P(wp, ..., wn)

Recall: WPRMg(w) = {(f(Py), ..., (Ps)) : f € Sq} with {P1,..., Py} = P(wo, ..., wm)(Fq).

Fix f € Sq € Fy[x0,...,Xm] and P € P(wp, ..., wn)(Fq).
To evaluate f at P, choose an Fy-representative xp = (Xg, ..., Xm) € ]qu+1 of P and define

f(P)="f(x0,--,Xm).

What happens if you choose another representative?
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Linear Codes 000

Evaluating a polynomial at a point of P(wp, ..., wn)

Recall: WPRMg(w) = {(f(Py), ..., (Ps)) : f € Sq} with {P1,..., Py} = P(wo, ..., wm)(Fq).

Fix f € Sq € Fy[x0,...,Xm] and P € P(wp, ..., wn)(Fq).
To evaluate f at P, choose an Fy-representative xp = (Xg, ..., Xm) € IFZ’“ of P and define
f(P)="f(x0,--,Xm).

What happens if you choose another representative?

As f € Sy is weighted homogeneous, f(A"°xg, ..., A\""xy) = AN (X0, ..., Xm).
Given two sets of representatives {xp} and {yp} of P(wyp, ..., wn)(Fq),
(so that yp = Ap - xp for some Ap # 0)
)\‘,il
(flypy), ... flyp,)) = (f(xpy), ..., f(xp,))

x,
= wt ((f(yp,)s---,f(yp,))) = wt((f(xp,),....f(xp,)))-

© The parameters of the code WPRMy(w) do not depend on the choice of representatives.
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Linear Codes 00®
Literature on Reed-Muller type codes

* Projective Reed-Muller codes (w = (1,...,1)) were introduced by Lachaud [Lac88] and
comprehensively studied by Sgrensen [Sgr92].

® San-José [SJ24] provided a recursive construction for projective Reed-Muller codes.
® Aubry, et al. [ACGT17] gave the parameters of WPRMy(1, wy, ws) and wiws | d < q.
® Cakiroglu and Sahin [CS$25] gave the parameters of WPRMy4(1,1, ws) and d < qws.

* Aubry and Perret [AP24] gave the minimum distance for w = (1, wy, wy, ..., wp,) for
lem(w) | d < wagq.
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Linear Codes 00®
Literature on Reed-Muller type codes

* Projective Reed-Muller codes (w = (1,...,1)) were introduced by Lachaud [Lac88] and
comprehensively studied by Sgrensen [Sgr92].

® San-José [SJ24] provided a recursive construction for projective Reed-Muller codes.
® Aubry, et al. [ACGT17] gave the parameters of WPRMy(1, wy, ws) and wiws | d < q.
® Cakiroglu and Sahin [CS$25] gave the parameters of WPRMy4(1,1, ws) and d < qws.

* Aubry and Perret [AP24] gave the minimum distance for w = (1, wy, wy, ..., wp,) for
lem(w) | d < wagq.

In this talk, | am going to

¢ give the parameters of WPRMy(1, ws, ws) for any degree d
with Yagmur Cakiroglu, Mesut Sahin (https://arxiv.org/abs/2410.11968)
to appear in Design, Codes and Cryptography (WCC 2024)

¢ discuss how the methods can (or cannot) be generalized to general weights w = (wy, ..., W)
with Rodrigo San-José (ongoing work).
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Vanishing Ideal of P(wg wm)(Fg) ®

Vanishing Ideal of P(wo, ..., wn)(Fy)

Recall: WPRMgy(w) = {(F(P1),...,f(Ps) : f € Sq} with {Py, ..., Pa} = P(wo, ..., wn)(Fq).

The vanishing ideal | = I (P(wp, ..., wm)(Fq)) is the (homogeneous) ideal generated by
homogeneous polynomials vanishing on P(wp, ..., wn)(Fq): | = @y=q la-

WPRMd(W) ~ Sd//d.

I (P(wp, - .., wn)(Fq)) is binomial, i.e. generated by differences of monomials.
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Vanishing Ideal of P(wg wm)(Fq) ® I

Vanishing Ideal of P(wo, ..., wn)(Fy)

Recall: WPRMg(w) = {(f(P1),...,f(Pn)) : f € Sq} with {P1,...,Ps} =P(wo,...,wn)([Fq).

The vanishing ideal | = I (P(wp, ..., wm)(Fq)) is the (homogeneous) ideal generated by
homogeneous polynomials vanishing on P(wp, ..., wn)(Fq): | = @y=q la-

WPRMd(W) asd Sd//d.
I (P(wp, ..., wn)(Fq)) is binomial, i.e. generated by differences of monomials.

I(P(1, wy, w2)(Fgq)) is generated by the following binomials:
q—1

fo = x1x <x2( s _ quil)wz) , fi = xox0 (qu71 - X(gqfl)wz) , b =xox1 (X{Fl - Xéqil)m) .

{fo, fi, K2} is the unique minimal generating set and is also a universal Groebner basis.
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Vanishing Ideal of P(wg wm)(Fg) ®

Vanishing Ideal of P(wo, ..., wn)(Fy)

Recall: WPRMg(w) = {(f(P1),...,f(Pn)) : f € Sq} with {P1,...,Ps} =P(wo,...,wn)([Fq).

The vanishing ideal | = I (P(wp, ..., wm)(Fq)) is the (homogeneous) ideal generated by
homogeneous polynomials vanishing on P(wp, ..., wn)(Fq): | = @y=q la-

WPRMd(W) asd Sd//d.
I (P(wp, - .., wn)(Fq)) is binomial, i.e. generated by differences of monomials.

m m
In general, Hxﬁ” — Hx,.b" €l (P(w,...,wn)(Fy)) if and only if for every i € {0,..., m},
i=0 i=0
a,-=0©b,-=0and q—l | b,-—a,-.

[$a22, §3] or [Nar22, Theorem 3.5]

/\ Generators highly depend on the structure of the numerical semigroup {wp, ..., Wp)y-
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Dimension €0

Monomials as integral points

Recall: S = Fq[xo,...,Xm] = @ysq Sa is graded by deg,, ([T x7") = aowo + - - - + amWn.

Assume w = (1, wy, ws) with wy < ws coprime. dfws }
A degree d € N defines a triangle

Py:={(x,y)eR?® : x>0,y >0, wix + wpy < d}
whose integral points give a basis of Sg = Span My, where

i a,d._ d—wiag—wsaz a1 asz . _ 72 d/un
My = {x = x§ xi'x3* 1a = (a1, ) € PynZ } P1s for w = (1,2,3)
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Dimension €0

Monomials as integral points
Recall: S =TFg[xo, ..., Xm| = Dyso Sa is graded by deg,, (I x) = aowo + - - - + amWa.

[Tx" = ]]x" €! @(w)(F,)) iif (ar =0« b =0) and g — 1| b — a;.

Assume w = (1, wy, ws) with wy < ws coprime. dfws }

A degree d € N defines a triangle
Py:={(x,y)eR? : x>0,y >0, wix + woy < d}
whose integral points give a basis of S; = Span My, where N
— fad ._ d-wa— D4 - 72 d/w
Ma = {Xa =X TG ra = (an @) € Pan } Pia for w = (1,2,3)

For general w = (wg, ..., wy), Py € R™ is a simplex of dimension m.

Hermite Normal Form of w' — normal fan of Py

4 — xbd e |(P(w)(F,)) if and only if Pis for w = (2,3,5)

Given a,be Py n 2™, x*
—-1)z"

a and b lie exactly exactly on the same faces and b — a € (g

Basis of WPRMy(w) = My modulo /(P(w)(F,)) ~ P4y nZ" modulo g — 1 face by face.
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Dimension O®
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(1,2,3) and g = 5.

Reduction of Py with w

9/12
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Dimension O®

Reduction and formula for the dimension of WPRM(1, wy, w2)

(T~ =TT T T T 1y =q— 14

b 41

~

(41

Reduction of Py with w = (1,2,3) and g = 5.

e e N I

L2000 1wy slope
Then dimp, (WPRMg(1, wi, ws)) = (€ + 1)pg + po + 1 + Z {WJ + |H(d)|
y=0(+1 1
den(d; (wi,wa))  fd<ww(q—1),  repezoidalpart

where |H(d)| = {

q—14+ 1y g+ 1u,q ifd>wmwa(qg—1).
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Minimum Distance 00

Minimum distance (1/2) i.e. closed formulae that nobody wants to read

Lower bound on the minimum distance using the footprint bound (Grdbner basis theory)
A\ Footprint lower bound never achieved for w = (1,...,1). [BDG19]

® Forw = (1, w1, ws) # (1,1,1) the footprint bound is achieved when d < qws.
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Minimum Distance 00

Minimum distance (1/2) i.e. closed formulae that nobody wants to read

Lower bound on the minimum distance using the footprint bound (Grdbner basis theory)

A\ Footprint lower bound never achieved for w = (1,...,1). [BDG19]

® Forw = (1, w1, ws) # (1,1,1) the footprint bound is achieved when d < qws.

Set ¢ = [‘“+<"*”J Then dmin(WPRMg(1, wi, ws)) = {q(q —d+1) ifd<q-1,
qg—/¢ if g<d<wg.
Assume that d > woq.
e If wy =1, then dm,'n(WPRMd(]., wy, WQ)) = il,
® Assume wy = 2.
* If wa > wy + 2, then dmin(WPRMg(w) = {f -t :’; :/Vl>(q(;v<ll<wij £W11~\,+ we)(q = 1),

® If wo = w; + 1, then

—¢ if -1
dmin(WPRM(w)) = {9~ ¢ Twal@=1) ‘ ’
l if d > (w1 + w2)(g—1).
If wog < d < wag+ %5 + 1, several cases have to be distinguished.
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Minimum Distance O®

Minimum distance (2/2) i.e. lower bounds (not even always equalities!) that nobody wants to read

we = wy + 1

If wag < d < wyg+ %5 + 1, several cases have to be distinguished.

A The footprint bound may not be achieved!

* If d—(wi +1)q ¢ (wr,wq + 1), then dpin(WPRMy (1, Wi, w2)) = g —£.

e Ifd—(wi+1)gewi,wy + 1), sets=d— lmJ wi(wy +1). Then

Amin(WPRM (1, wy, w»)) is bounded from below by
g — max {Z, lmJ - 1} if s=0(.e. wi(wq +1)|d),

q—max{&lm” if s¢ {wi,wy +1)y orwy|sorw +1]s,

q—max{é, lmJ +1} if se(wy,wy + 1)y with wy fsand wy +11s.

® The equality holds when the value is g — ¢ or when wq | g—1.
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Conclusion ®
Conclusion and open questions

What we have for WPRM(1, wy, ws):
* universal Grobner basis of the vanishing ideal of P(1, wq, w»)(Fg),
* regularity set of P(1, wy, wo)(IFy),
¢ dimension for every degree d,
* minimum distance for almost every degree d.
(only a lower bound when wy; = wy + 1 for a certain range of d)
What about more general w?
When ged(w;, g — 1) =1 for all i’s but 2, we can extend the recursive construction of PRM.
— dimension, bound on generalized weights, subfield subcodes...
Research directions
* My current obsession: P(2,3,5) over F3; (31—1=2-3-5)
® a universal Grobner basis for every w?
e Comparing the parameters WPRM,(w) with existing codes
* How good are their local properties (decodability/recoverability)?
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Conclusion ®
Conclusion and open questions

What we have for WPRM(1, wy, ws):
* universal Grobner basis of the vanishing ideal of P(1, wq, w»)(Fg),
* regularity set of P(1, wy, wo)(IFy),
¢ dimension for every degree d,

* minimum distance for almost every degree d.
(only a lower bound when wy; = wy + 1 for a certain range of d)

What about more general w?
When ged(w;, g — 1) =1 for all i’s but 2, we can extend the recursive construction of PRM.

— dimension, bound on generalized weights, subfield subcodes...
Research directions

* My current obsession: P(2,3,5) over F3; (31-1=2-3-5)
® a universal Grobner basis for every w?

e Comparing the parameters WPRM,(w) with existing codes

* How good are their local properties (decodability/recoverability)?

Thank you for your attention!
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Regularity set ®

Regularity Set

The regularity set of P(w)(Fq) is
reg, g = {d € {wo, ..., Wn)y : dimp, WPRMy(w) = #P(w)(Fq)}.

If d € reg,, , then WPRM,(w) = Fg, where n = #P(w)(F,). Thus, it is a trivial code [n, n, 1].
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inear Codes Vanishing Id of ) Dimension Minimum Distan Conclusior Regularity set ® References

Regularity Set for w = (w1, ws) with ged(wy, wo = 1)

The regularity set of P(w)(Fq) is
reg, g = {d € {wo, ..., Wn)y : dimp, WPRMy(w) = #P(w)(Fq)}.

If d € reg,, , then WPRM,(w) = Fg, where n = #P(w)(F,). Thus, it is a trivial code [n, n, 1].

d € €8 (1 . wy),q Iif there exists dg > g such that d = dowiw, and (w1 + w2)(q — 1) < d.

g + 1 integral points on the slope (g — 1)° integral points in the interior

If 1 < w; < wp, then reg1,m,
If wg =1, then

wa)yg = {d eN:d= dywiw, with dy = q} = gwiws + Nwyws.

—1 -1
reg(11W2)q={deN:d=d0W2 with dOZq—i—{qJ}: (q—i—{qJ) wo + Nws.
Lwe), Wo W
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