
IOP of Proximity to Algebraic Geometry codes

Sarah Bordage Jade Nardi
November 19, 2020
https://eccc.weizmann.ac.il/report/2020/165/

LIX, Ecole Polytechnique, Institut Polytechnique de Paris
Inria

https://eccc.weizmann.ac.il/report/2020/165/

Algebraic Geometry (AG) codes

Let C be an algebraic curve defined over a finite field F.

Divisors. A divisor D on C is a formal sum of points D =
∑

nPP .

Its degree is degD :=
∑

nP and support is Supp(D) := {P ∈ C | np 6= 0}.
D ≤ D′ if nP ≤ n′P for every P .
A function f on C defines a principal divisor (f) :=

∑
P
vP (f)︸ ︷︷ ︸
valuation

P .

Riemann-Roch space of D. LC(D) = {f ∈ F(C) | (f) ≥ −D} ∪ {0}.

Embedding of RR spaces: If D ≤ D′, then LC(D) ⊂ LC(D′).

AG codes
Given P ⊂ C(F) of size n := |P| and a divisor D on C s.t. Supp(D) ∩ P = ∅, the AG code
C = C(C,P, D) is defined as the image by ev : LC(D)→ Fn.

We always choose D so that ev is injective: Fn! FP and

C(C,P, D) = {f : P → F | f coincides with a fct in LC(D)} .

1 / 10

Group action and Kani’s splitting of Riemann-Roch spaces

Let C be a curve over a field F and let Γ = 〈γ〉 ' Z/mZ a group of automorphisms of C s.t
gcd(m, |F|) = 1. Set the projection map π : C → C′ := C/Γ. Take ζ ∈ F a primitive mth root of unity.

• Γ acts on the functions on C: γ · f = f ◦ γ for any fct f on C.
• There exists a function µ on C s.t. γ · µ = ζµ [Kani’86].

For any Γ-invariant divisor D on C, the action of Γ on LC(D) gives

LC(D) =
m−1⊕
j=0

LC(D)j where LC(D)j := {g ∈ LC(D) | γ · g = ζjg}.

[Kani’86] LC(D)j ' µjπ∗ (LC′ (Ej)) where Ej :=
⌊

1
m
π∗ (D + j(µ))

⌋1 is a divisor on C′.

Splitting of Riemann-Roch spaces: LC(D) =
m−1⊕
j=0

µjπ∗LC′ (Ej)

 For every f ∈ LC(D), there exist m fcts fj ∈ LC′ (Ej) s.t. f =
m−1∑
j=0

µjfj ◦ π.

1Notation:
⌊

1
n D
⌋

:=
∑⌊

nP
n

⌋
P , for a divisor D =

∑
nP P and integer n > 0. 2 / 10

Kani’s result on C = P1

[Kani’86]: LC(D) =
m−1⊕
j=0

µjπ∗LC′

(⌊ 1
m
π∗ (D + j(µ))

⌋)
.

FRI context: For evaluation domain P = 〈[1 : ω]〉 where ω has order 2r.

• γ : [X0 : X1] 7→ [X0 : −X1] acts on P1 and 〈γ〉 ' Z/2Z,
• Define projection π : P1 → P1 by π[X0 : X1] := [X2

0 : X2
1],

Consider the RS code RS[F,P, d+ 1] viewed as the AG code C = C(P1,P, dP∞), where P∞ = [0 : 1].

Kani’s result with µ = x := X1
X0

(γ · x = −x) yields to ((x) = [1 : 0]− P∞)

LP1(dP∞) = π∗LP1

(⌊
d

2

⌋
P∞

)
+ xπ∗LP1

(⌊
d− 1

2

⌋
P∞

)
,

i.e. any polynomial f of degree ≤ d can be written f(x) = f0(x2) + xf1(x2) with
[

deg f0 ≤
⌊
d
2

⌋
,

deg f1 ≤
⌊
d−1

2

⌋
.

→ Proximity to C = C(C,P, D) reduced to proximity to C′ = C(P1,P ′,
⌊
d
2

⌋
P∞) where P ′ = π(P).

Remark: For odd d,
⌊
d
2

⌋
=
⌊
d−1

2

⌋
, i.e. LP1(dP∞) is split into 2 “copies” of the same space.

3 / 10

Using Kani’s result to fold

Let C be a curve over a field F on which acts Γ ' Z/mZ, with the projection map π : C → C/Γ.

FRI’s idea: proximity to an AG-code C = C(C,P, D) reduced to proximity to an AG-code
C′ = C(C/Γ,P ′, D′)

We need: – a Γ-invariant divisor D [Kani’86]=⇒ f∈

LC(D)

=
m−1∑
j=1

µj fj∈

LC/Γ(Ej)

◦ π.

– an evaluation set P = union of Γ-orbits of size |Γ| (Γ acts freely on P).

Take P ′ = π(P) (|P ′| = |P| /m) and D′ is a divisor on C/Γ s.t. LC/Γ(D′) ⊇ LC/Γ(Ej).

1. Split f : P → F into m functions fj : P ′ → F.

2. For any z ∈ F, define folding of f as the function Fold [f, z] : P ′ → F s.t. Fold [f, z] =
m−1∑
j=0

zjfj .

→ Fold [·, z] (C) ⊆ C′

4 / 10

The folding operator

(First attempt) If we define Fold [f, z] =
m−1∑
j=0

zjfj :

Ë Completeness: Fold [·, z] (C) ⊆ C′.
Ë Locality: For any P ∈ P ′, compute Fold [f, z] (P) with m queries to f .

interpolate the set of m points
{

(µ(Q), f(Q)) | Q ∈ π−1({P})
}

.
é Distance preservation: If ∆(f, C) > δ, then ∆(Fold [f, z] , C′) > δ′ (w.h.p.).

We need to ensure that fj /∈ L(D′) \ L(Ej)!

Define balancing functions νj ∈ F(C/Γ) s.t. h ∈ L(Ej) iff both h ∈ L(D′) and νjh ∈ L(D′).

(on P1: if deg ν = 1, then deg h ≤ d− 1 iff deg h, deg νh ≤ d)

We assume there exists νj ∈ F(C/Γ) such that (νj)∞ = D′ − Ej . (for simplicity, take D′ = E0.)

−→ Need to carefully define D′, otherwise such functions νj may not exist.

(Final attempt) For any (z1, z2) ∈ F2, define Fold [f, (z1, z2)] : P ′ → F s.t.

Fold [f, (z1, z2)] =
m−1∑
j=0

zj1fj +
m−1∑
j=1

zj2νjfj .

5 / 10

The folding operator

(First attempt) If we define Fold [f, z] =
m−1∑
j=0

zjfj :

Ë Completeness: Fold [·, z] (C) ⊆ C′.
Ë Locality: For any P ∈ P ′, compute Fold [f, z] (P) with m queries to f .

interpolate the set of m points
{

(µ(Q), f(Q)) | Q ∈ π−1({P})
}

.
é Distance preservation: If ∆(f, C) > δ, then ∆(Fold [f, z] , C′) > δ′ (w.h.p.).

We need to ensure that fj /∈ L(D′) \ L(Ej)!

Define balancing functions νj ∈ F(C/Γ) s.t. h ∈ L(Ej) iff both h ∈ L(D′) and νjh ∈ L(D′).

(on P1: if deg ν = 1, then deg h ≤ d− 1 iff deg h, deg νh ≤ d)

We assume there exists νj ∈ F(C/Γ) such that (νj)∞ = D′ − Ej . (for simplicity, take D′ = E0.)

−→ Need to carefully define D′, otherwise such functions νj may not exist.

(Final attempt) For any (z1, z2) ∈ F2, define Fold [f, (z1, z2)] : P ′ → F s.t.

Fold [f, (z1, z2)] =
m−1∑
j=0

zj1fj +
m−1∑
j=1

zj2νjfj .

5 / 10

The folding operator

(First attempt) If we define Fold [f, z] =
m−1∑
j=0

zjfj :

Ë Completeness: Fold [·, z] (C) ⊆ C′.
Ë Locality: For any P ∈ P ′, compute Fold [f, z] (P) with m queries to f .

interpolate the set of m points
{

(µ(Q), f(Q)) | Q ∈ π−1({P})
}

.
é Distance preservation: If ∆(f, C) > δ, then ∆(Fold [f, z] , C′) > δ′ (w.h.p.).

We need to ensure that fj /∈ L(D′) \ L(Ej)!

Define balancing functions νj ∈ F(C/Γ) s.t. h ∈ L(Ej) iff both h ∈ L(D′) and νjh ∈ L(D′).

(on P1: if deg ν = 1, then deg h ≤ d− 1 iff deg h, deg νh ≤ d)

We assume there exists νj ∈ F(C/Γ) such that (νj)∞ = D′ − Ej . (for simplicity, take D′ = E0.)

−→ Need to carefully define D′, otherwise such functions νj may not exist.

(Final attempt) For any (z1, z2) ∈ F2, define Fold [f, (z1, z2)] : P ′ → F s.t.

Fold [f, (z1, z2)] =
m−1∑
j=0

zj1fj +
m−1∑
j=1

zj2νjfj .

5 / 10

Foldable AG codes

An AG code C0 = C(C0,P0, D0) is said to be foldable if we can repeat the previous process:

1. There exists a large solvable group G ∈ Aut(C0) acting freely on P0, G = G0 B G1 B · · · B Gr = 1
composition series→ Γi := Gi/Gi+1 ' Z/piZ

→ Sequence of curves (Ci) s.t. Ci+1 := Ci/Γi
→ Sequence of evaluation points (Pi) s.t. Pi+1 = πi(Pi) |Pi+1| = |Pi| /pi

2. There exists a “nice” sequence of divisors (Di), i.e. for each i:
– Di is supported by Γi-fixed points,
– for every 0 ≤ j < pi, Ei,j ≤ Di+1, ([Kani’86] L(Di) is split into pi smaller spaces L(Ei,j))
– for every 0 ≤ j < pi, there exists νi+1,j ∈ F(Ci+1) s.t. (νi+1,j)∞ = Di+1 − Ei,j .

A foldable AG code C0 = C(C0,P0, D0) induces
a sequence of AG codes (Ci = C(Ci,Pi, Di)).

6 / 10

Overview of the AG-IOPP

Prover Verifier

f0

(F, C0,P0, D0)

z0 ← F2

f1

z1 ← F2

f2

...

zr−1 ← F2

fr

COMMIT Phase

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1]
Final test: fr ∈ Cr

Round consistency tests:
Sample Q0 ∈ P0,
Define query path (Q1, . . . , Qr) s.t. Qi+1 = πi(Qi).

f1(Q1) ?= Fold [f0, z0] (Q1)

f2(Q2) ?= Fold [f1, z1] (Q2)

...

fr(Qr)
?= Fold [fr−1, zr−1] (Qr)

Final test: fr
?
∈ C(Cr,Pr, Dr)

Completeness:
If f0 ∈ C0, V accepts with proba 1.

Soundness: (relies on [BKS18] and [BGKS19])
If f0 is δ-far from C0, V accepts with proba
err(δ) < errcommit + (errquery(δ))α

α : repetition parameter

7 / 10

Overview of the AG-IOPP

Prover Verifier

f0

(F, C0,P0, D0)

z0 ← F2

f1

z1 ← F2

f2

...

zr−1 ← F2

fr

QUERY Phase

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1]
Final test: fr ∈ Cr

Round consistency tests:
Sample Q0 ∈ P0,
Define query path (Q1, . . . , Qr) s.t. Qi+1 = πi(Qi).

f1(Q1) ?= Fold [f0, z0] (Q1)

f2(Q2) ?= Fold [f1, z1] (Q2)

...

fr(Qr)
?= Fold [fr−1, zr−1] (Qr)

Final test: fr
?
∈ C(Cr,Pr, Dr)

Completeness:
If f0 ∈ C0, V accepts with proba 1.

Soundness: (relies on [BKS18] and [BGKS19])
If f0 is δ-far from C0, V accepts with proba
err(δ) < errcommit + (errquery(δ))α

α : repetition parameter

7 / 10

Overview of the AG-IOPP

Prover Verifier

f0

(F, C0,P0, D0)

z0 ← F2

f1

z1 ← F2

f2

...

zr−1 ← F2

fr

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1]
Final test: fr ∈ Cr

Round consistency tests:
Sample Q0 ∈ P0,
Define query path (Q1, . . . , Qr) s.t. Qi+1 = πi(Qi).

f1(Q1) ?= Fold [f0, z0] (Q1)

f2(Q2) ?= Fold [f1, z1] (Q2)

...

fr(Qr)
?= Fold [fr−1, zr−1] (Qr)

Final test: fr
?
∈ C(Cr,Pr, Dr)

Completeness:
If f0 ∈ C0, V accepts with proba 1.

Soundness: (relies on [BKS18] and [BGKS19])
If f0 is δ-far from C0, V accepts with proba
err(δ) < errcommit + (errquery(δ))α

α : repetition parameter

7 / 10

A family of foldable codes on Kummer curves

Assume gcd(N, d) = 1 and gcd(N, |F|) = 1.
The group Z/NZ acts on C0 ((x, y) 7→ (x, ζy) for ζN = 1)
and is solvable. Write N =

∏r−1
i=0 pi and Ni =

∏r−1
j=i pj

Z/NZ B Z/N1Z B Z/N2Z B · · · B Z/Nr−1Z B 1

⇒ Γi = 〈γi〉 ' Z/piZ (γi : (x, y) 7→ (x, ζiy) with ζpi
i = 1)

Sequence of divisors (Di) supported by Γi−fixed points:
P` := (α`, 0) and P i∞ (unique point at ∞)
Any fct f ∈ LCi (Di) can be written (µi = y as γi · y = ζiy)

Z/p0Z

˘ C0 : yN = f(x)=
d∏
`=1

(x− α`)“

π0

Z/p1Z

˘ C1 : y
N
p0 = f(x)

“

π1
...

Z/piZ

˘ Ci : yNi = f(x)

“
πi: (x, y) 7→ (x, ypi)

...
P1 ' Cr : y = f(x)

f(x, y) =
pi−1∑
j=0

yjfj(x, ypi) with fj ∈ LCi+1

(⌊
πi∗(D)− jdP i+1

∞ + j
∑

P`

pi

⌋)
.

The code C(C,P, D) is foldable for D =
d∑
`=1

a`P` + bP 0
∞ if N | a`, b and d ≡ −1 mod N .

Existence of the balancing functions Ë
8 / 10

Main properties

Proximity testing to C0 = C(C0,P0, D0) of length n with C0 a Kummer curve
C0 : yN = f(x), N > nε, ε ∈ (0, 1).

• Minimum distance of each code Ci is ∆(Ci) = ∆(C0) = 1− degD0
n

.
• Last code Cr is a RS code of length n/N and dimension k = deg(D0)/N + 1 < n/N .

Proof length < n

Round complexity < logn
Query complexity O(n1−ε)

< α · pmax · logn+ k (repetition param α, pmax := max pi)

Prover complexity Õ(n)

O(n) + Õ(n/N)

Verifier complexity O(n1−ε)

O(logn) + Õ(k)

Question: Why not linear prover time and logarithmic query and verifier complexities (as in FRI)?

Recall final test “fr
?
∈ Cr” : the length n/N of the last code Cr is not constant.

 One needs N = |G| to be large enough for better complexities.

However, if Cr is a RS code, membership test to Cr might be substituted by FRI.

9 / 10

Main properties

Proximity testing to C0 = C(C0,P0, D0) of length n with C0 a Kummer curve
C0 : yN = f(x), N > nε, ε ∈ (0, 1).

• Minimum distance of each code Ci is ∆(Ci) = ∆(C0) = 1− degD0
n

.
• Last code Cr is a RS code of length n/N and dimension k = deg(D0)/N + 1 < n/N .

Proof length < n

Round complexity < logn
Query complexity < α · pmax · logn+ k (repetition param α, pmax := max pi)
Prover complexity O(n) + Õ(n/N)
Verifier complexity O(logn) + Õ(k)

Question: Why not linear prover time and logarithmic query and verifier complexities (as in FRI)?

Recall final test “fr
?
∈ Cr” : the length n/N of the last code Cr is not constant.

 One needs N = |G| to be large enough for better complexities.

However, if Cr is a RS code, membership test to Cr might be substituted by FRI.
9 / 10

Remarks and open questions

FRI AG-IOPP

Number of rounds as many as needed
limited by the size of G

unless Cr ' P1

Commit error

errcommit ≤
. . .

|F|

divided by ≈
∣∣P1(F)

∣∣ |Ci(F)| > |F|

Could we sample over the
points of the curves?

On improving soundness: DEEP technique for AG codes? Proximity gaps?

Other foldable codes?

Good candidates from asymptotically good towers of curves (“nice” sequence of divisors?)

10 / 10

