IOP of Proximity to Algebraic Geometry codes

Sarah Bordage Jade Nardi November 19, 2020 https://ecc.weizmann.ac.il/report/2020/165/

LIX, Ecole Polytechnique, Institut Polytechnique de Paris Inria

Algebraic Geometry (AG) codes

Let \mathcal{C} be an algebraic curve defined over a finite field \mathbb{F} .

Divisors. A divisor D on C is a formal sum of points $D = \sum n_P P$.

Its degree is deg $D := \sum n_P$ and support is $\operatorname{Supp}(D) := \{P \in \mathcal{C} \mid n_p \neq 0\}$. $D \leq D'$ if $n_P \leq n'_P$ for every P.

A function f on C defines a **principal divisor** $(f) := \sum_{P} \underbrace{v_{P}(f)}_{P} P.$

Riemann-Roch space of D. $L_{\mathcal{C}}(D) = \{f \in \mathbb{F}(\mathcal{C}) \mid (f) \geq -D\} \cup \{0\}.$

Embedding of RR spaces: If $D \leq D'$, then $L_{\mathcal{C}}(D) \subset L_{\mathcal{C}}(D')$.

AG codes

Given $\mathcal{P} \subset \mathcal{C}(\mathbb{F})$ of size $n := |\mathcal{P}|$ and a divisor D on \mathcal{C} s.t. $\operatorname{Supp}(D) \cap \mathcal{P} = \emptyset$, the **AG code** $C = C(\mathcal{C}, \mathcal{P}, D)$ is defined as the image by $\operatorname{ev} : L_{\mathcal{C}}(D) \to \mathbb{F}^n$.

We always choose D so that ev is injective: $\mathbb{F}^n \iff \mathbb{F}^{\mathcal{P}}$ and

 $C(\mathcal{C}, \mathcal{P}, D) = \{f : \mathcal{P} \to \mathbb{F} \mid f \text{ coincides with a fct in } L_{\mathcal{C}}(D)\}.$

Let C be a curve over a field \mathbb{F} and let $\Gamma = \langle \gamma \rangle \simeq \mathbb{Z}/m\mathbb{Z}$ a group of automorphisms of C s.t $gcd(m, |\mathbb{F}|) = 1$. Set the projection map $\pi : C \to C' := C/\Gamma$. Take $\zeta \in \overline{\mathbb{F}}$ a primitive m^{th} root of unity.

- Γ acts on the functions on C: $\gamma \cdot f = f \circ \gamma$ for any fct f on C.
- There exists a function μ on C s.t. $\gamma \cdot \mu = \zeta \mu$ [Kani'86].

For any Γ -invariant divisor D on C, the action of Γ on $L_{\mathcal{C}}(D)$ gives $L_{\mathcal{C}}(D) = \bigoplus_{j=0}^{m-1} L_{\mathcal{C}}(D)_j \text{ where } L_{\mathcal{C}}(D)_j := \{g \in L_{\mathcal{C}}(D) \mid \gamma \cdot g = \zeta^j g\}.$

[Kani'86] $L_{\mathcal{C}}(D)_j \simeq \mu^j \pi^* \left(L_{\mathcal{C}'}(E_j) \right)$ where $E_j := \left\lfloor \frac{1}{m} \pi_* \left(D + j(\mu) \right) \right\rfloor^1$ is a divisor on \mathcal{C}' .

Splitting of Riemann-Roch spaces: $L_{\mathcal{C}}(D) = \bigoplus_{j=0}^{m-1} \mu^j \pi^* L_{\mathcal{C}'}(E_j)$

 \rightsquigarrow For every $f \in L_{\mathcal{C}}(D)$, there exist m fcts $f_j \in \underline{L_{\mathcal{C}'}(E_j)}$ s.t. $f = \sum_{j=0}^{m-1} \mu^j f_j \circ \pi$.

¹Notation:
$$\left\lfloor \frac{1}{n}D \right\rfloor := \sum \left\lfloor \frac{n_P}{n} \right\rfloor P$$
, for a divisor $D = \sum n_P P$ and integer $n > 0$.
2/10

[Kani'86]:
$$L_{\mathcal{C}}(D) = \bigoplus_{j=0}^{m-1} \mu^j \pi^* L_{\mathcal{C}'}\left(\left\lfloor \frac{1}{m} \pi_* \left(D + j(\mu)\right) \right\rfloor\right).$$

FRI context: For evaluation domain $\mathcal{P} = \langle [1:\omega] \rangle$ where ω has order 2^r .

- $\gamma: [X_0:X_1] \mapsto [X_0:-X_1]$ acts on \mathbb{P}^1 and $\langle \gamma \rangle \simeq \mathbb{Z}/2\mathbb{Z}$,
- Define projection $\pi: \mathbb{P}^1 \to \mathbb{P}^1$ by $\pi[X_0:X_1] := [X_0^2:X_1^2]$,

Consider the RS code $RS[\mathbb{F}, \mathcal{P}, d+1]$ viewed as the AG code $C = C(\mathbb{P}^1, \mathcal{P}, dP_\infty)$, where $P_\infty = [0:1]$.

Kani's result with $\mu = x := \frac{X_1}{X_0} (\gamma \cdot x = -x)$ yields to $((x) = [1:0] - P_{\infty})$

$$L_{\mathbb{P}^1}(dP_{\infty}) = \pi^* L_{\mathbb{P}^1}\left(\left\lfloor \frac{d}{2} \right\rfloor P_{\infty}\right) + x\pi^* L_{\mathbb{P}^1}\left(\left\lfloor \frac{d-1}{2} \right\rfloor P_{\infty}\right),$$

i.e. any polynomial f of degree $\leq d$ can be written $f(x) = f_0(x^2) + x f_1(x^2)$ with $\begin{bmatrix} \deg f_0 \leq \lfloor \frac{d}{2} \rfloor, \\ \deg f_1 \leq \lfloor \frac{d-1}{2} \rfloor. \end{bmatrix}$

 $\rightarrow \text{Proximity to } C = C(\mathcal{C}, \mathcal{P}, D) \text{ reduced to proximity to } C' = C(\mathbb{P}^1, \mathcal{P}', \left\lfloor \frac{d}{2} \right\rfloor P_{\infty}) \text{ where } \mathcal{P}' = \pi(\mathcal{P}).$ **Remark**: For odd d, $\left\lfloor \frac{d}{2} \right\rfloor = \left\lfloor \frac{d-1}{2} \right\rfloor$, i.e. $L_{\mathbb{P}^1}(dP_{\infty})$ is split into 2 "copies" of the same space. Let \mathcal{C} be a curve over a field \mathbb{F} on which acts $\Gamma \simeq \mathbb{Z}/m\mathbb{Z}$, with the projection map $\pi : \mathcal{C} \to \mathcal{C}/\Gamma$.

FRI's idea: proximity to an AG-code $C = C(\mathcal{C}, \mathcal{P}, D)$ reduced to proximity to an AG-code $C' = C(\mathcal{C}/\Gamma, \mathcal{P}', D')$ We need: $-a \Gamma$ -invariant divisor $D \stackrel{[Kani'86]}{\Longrightarrow} f_{\substack{\mathcal{L}_{\mathcal{C}}(D)}} = \sum_{j=1}^{m-1} \mu^{j} f_{j} \circ \pi$. $-an \text{ evaluation set } \mathcal{P} = \text{union of } \Gamma\text{-orbits of size } |\Gamma| (\Gamma \text{ acts freely on } \mathcal{P}).$

 $\mathsf{Take}\ \mathcal{P}' = \pi(\mathcal{P})\ (|\mathcal{P}'| = |\mathcal{P}|\ /m) \text{ and } D' \text{ is a divisor on } \mathcal{C}/\Gamma \text{ s.t. } L_{\mathcal{C}/\Gamma}(D') \supseteq L_{\mathcal{C}/\Gamma}(E_j).$

1. Split $f : \mathcal{P} \to \mathbb{F}$ into m functions $f_j : \mathcal{P}' \to \mathbb{F}$.

2. For any $z \in \mathbb{F}$, define folding of f as the function Fold $[f, z] : \mathcal{P}' \to \mathbb{F}$ s.t. Fold $[f, z] = \sum_{j=0}^{m-1} z^j f_j$. \to Fold $[\cdot, z] (C) \subseteq C'$

The folding operator

(First attempt) If we define Fold
$$[f, z] = \sum_{j=0}^{m-1} z^j f_j$$
 :

- Completeness:
- ✓ Locality:

- Fold $[\cdot, z](C) \subseteq C'$. For any $P \in \mathcal{P}'$, compute Fold [f, z](P) with m queries to f. interpolate the set of m points $\{(\mu(Q), f(Q)) \mid Q \in \pi^{-1}(\{P\})\}$. If $\Delta(f, C) > \delta$, then Δ (Fold $[f, z], C') > \delta'$ (w.h.p.).
- **X** Distance preservation:

We need to ensure that $f_j \notin L(D') \setminus L(E_j)!$

The folding operator

(First attempt) If we define Fold
$$[f, z] = \sum_{j=0}^{m-1} z^j f_j$$
 :

- ✓ Completeness: Fold $[\cdot, z](C) \subseteq C'$.
- ✓ Locality: For any $P \in \mathcal{P}'$, compute Fold [f, z] (P) with m queries to f. interpolate the set of m points $\{(\mu(Q), f(Q)) \mid Q \in \pi^{-1}(\{P\})\}$.
- **X** Distance preservation: If $\Delta(f, C) > \delta$, then $\Delta(\operatorname{Fold}[f, z], C') > \delta'$ (w.h.p.). We need to ensure that $f_j \notin L(D') \setminus L(E_j)$!

Define balancing functions $\nu_j \in \mathbb{F}(\mathcal{C}/\Gamma)$ s.t. $h \in L(E_j)$ iff both $h \in L(D')$ and $\nu_j h \in L(D')$.

(on \mathbb{P}^1 : if deg $\nu = 1$, then deg $h \leq d - 1$ iff deg h, deg $\nu h \leq d$)

We assume there exists $\nu_j \in \mathbb{F}(\mathcal{C}/\Gamma)$ such that $(\nu_j)_{\infty} = D' - E_j$. (for simplicity, take $D' = E_0$.)

 \longrightarrow Need to carefully define D', otherwise such functions ν_j may not exist.

The folding operator

(First attempt) If we define Fold
$$[f, z] = \sum_{j=0}^{m-1} z^j f_j$$
 :

✓ Completeness: Fold $[\cdot, z](C) \subseteq C'$.

- ✓ Locality: For any $P \in \mathcal{P}'$, compute Fold [f, z](P) with m queries to f. interpolate the set of m points $\{(\mu(Q), f(Q)) | Q \in \pi^{-1}(\{P\})\}$.
- **X** Distance preservation: If $\Delta(f, C) > \delta$, then $\Delta(\operatorname{Fold}[f, z], C') > \delta'$ (w.h.p.). We need to ensure that $f_j \notin L(D') \setminus L(E_j)!$

Define balancing functions $\nu_j \in \mathbb{F}(\mathcal{C}/\Gamma)$ s.t. $h \in L(E_j)$ iff both $h \in L(D')$ and $\nu_j h \in L(D')$.

(on \mathbb{P}^1 : if deg $\nu = 1$, then deg $h \le d - 1$ iff deg h, deg $\nu h \le d$)

We assume there exists $\nu_j \in \mathbb{F}(\mathcal{C}/\Gamma)$ such that $(\nu_j)_{\infty} = D' - E_j$. (for simplicity, take $D' = E_0$.)

 \longrightarrow Need to carefully define D', otherwise such functions ν_j may not exist.

(Final attempt) For any $(z_1, z_2) \in \mathbb{F}^2$, define Fold $[f, (z_1, z_2)] : \mathcal{P}' \to \mathbb{F}$ s.t. Fold $[f, (z_1, z_2)] = \sum_{j=0}^{m-1} z_1^j f_j + \sum_{j=1}^{m-1} z_2^j \nu_j f_j$.

Foldable AG codes

An AG code $C_0 = C(\mathcal{C}_0, \mathcal{P}_0, D_0)$ is said to be **foldable** if we can **repeat** the previous process:

- 1. There exists a large solvable group $\mathcal{G} \in \operatorname{Aut}(\mathcal{C}_0)$ acting freely on \mathcal{P}_0 , $\mathcal{G} = \mathcal{G}_0 \triangleright \mathcal{G}_1 \triangleright \cdots \triangleright \mathcal{G}_r = 1$ $\rightarrow \Gamma_i := \mathcal{G}_i/\mathcal{G}_{i+1} \simeq \mathbb{Z}/p_i\mathbb{Z}$
 - \rightarrow Sequence of curves (\mathcal{C}_i) s.t. $\mathcal{C}_{i+1} := \mathcal{C}_i / \Gamma_i$
 - \rightarrow Sequence of evaluation points (\mathcal{P}_i) s.t. $\mathcal{P}_{i+1} = \pi_i(\mathcal{P}_i) \rightsquigarrow |\mathcal{P}_{i+1}| = |\mathcal{P}_i|/p_i$
- 2. There exists a "nice" sequence of divisors (D_i) , i.e. for each *i*:
 - $-D_i$ is supported by Γ_i -fixed points,
 - for every $0 \le j < p_i$, $E_{i,j} \le D_{i+1}$, ([Kani'86] $L(D_i)$ is split into p_i smaller spaces $L(E_{i,j})$)
 - for every $0 \leq j < p_i$, there exists $\nu_{i+1,j} \in \mathbb{F}(\mathcal{C}_{i+1})$ s.t. $(\nu_{i+1,j})_{\infty} = D_{i+1} E_{i,j}$.

A foldable AG code $C_0 = C(\mathcal{C}_0, \mathcal{P}_0, D_0)$ induces a sequence of AG codes $(C_i = C(\mathcal{C}_i, \mathcal{P}_i, D_i))$.

Overview of the AG-IOPP

COMMIT Phase

Overview of the AG-IOPP

QUERY Phase

Round consistency tests:

Sample $Q_0 \in \mathcal{P}_0$, Define query path (Q_1, \ldots, Q_r) s.t. $Q_{i+1} = \pi_i(Q_i)$.

$$f_1(Q_1) \stackrel{?}{=} \operatorname{\mathsf{Fold}} \left[f_0, \boldsymbol{z}_0 \right](Q_1)$$

$$f_2(Q_2) \stackrel{?}{=} \mathsf{Fold} [f_1, z_1] (Q_2)$$

$$f_r(Q_r) \stackrel{?}{=} \operatorname{Fold} [f_{r-1}, \boldsymbol{z}_{r-1}] (Q_r)$$

Final test: $f_r \stackrel{?}{\in} C(\mathcal{C}_r, \mathcal{P}_r, D_r)$

Overview of the AG-IOPP

Completeness:

If $f_0 \in C_0$, \mathcal{V} accepts with proba 1.

A family of foldable codes on Kummer curves

Assume gcd(N, d) = 1 and $gcd(N, |\mathbb{F}|) = 1$. $\mathbb{Z}/p_0\mathbb{Z} \bigcirc \mathcal{C}_0 : y^N = f(x) = \prod (x - \alpha_\ell)$ The group $\mathbb{Z}/N\mathbb{Z}$ acts on \mathcal{C}_0 $((x, y) \mapsto (x, \zeta y)$ for $\zeta^N = 1$) $\downarrow \pi_0 \qquad \ell=1$ and is solvable. Write $N = \prod_{i=0}^{r-1} p_i$ and $N_i = \prod_{i=i}^{r-1} p_j$ $\mathbb{Z}/p_1\mathbb{Z} \oplus \mathcal{C}_1 : u^{\frac{N}{p_0}} = f(x)$ $\mathbb{Z}/N\mathbb{Z} \rhd \mathbb{Z}/N_1\mathbb{Z} \rhd \mathbb{Z}/N_2\mathbb{Z} \rhd \cdots \rhd \mathbb{Z}/N_{r-1}\mathbb{Z} \rhd 1$ $\downarrow \pi_1$ $\Rightarrow \Gamma_i = \langle \gamma_i \rangle \simeq \mathbb{Z}/p_i \mathbb{Z} \ (\gamma_i : (x, y) \mapsto (x, \zeta_i y) \text{ with } \zeta_i^{p_i} = 1)$ $\mathbb{Z}/p_i\mathbb{Z} \oplus \mathcal{C}_i : y^{N_i} = f(x)$ $\downarrow \pi_i: (x, y) \mapsto (x, y^{p_i})$ **Sequence of divisors** (D_i) supported by Γ_i -fixed points: $P_{\ell} := (\alpha_{\ell}, 0)$ and P_{∞}^{i} (unique point at ∞) Any fct $f \in L_{\mathcal{C}_i}(D_i)$ can be written $(\mu_i = y \text{ as } \gamma_i \cdot y = \zeta_i y)$ $\mathbb{P}^1 \simeq \mathcal{C}_r : u = f(x)$ $f(x,y) = \sum_{j=1}^{p_i-1} y^j f_j(x,y^{p_i}) \text{ with } f_j \in L_{\mathcal{C}_{i+1}}\left(\left| \frac{\pi_{i*}(D) - jdP_{\infty}^{i+1} + j\sum P_{\ell}}{p_i} \right| \right).$ The code $C(\mathcal{C}, \mathcal{P}, D)$ is foldable for $D = \sum a_{\ell} P_{\ell} + b P_{\infty}^{0}$ if $N \mid a_{\ell}, b$ and $d \equiv -1 \mod N$.

Existence of the balancing functions \checkmark

Main properties

Proximity testing to $C_0 = C(\mathcal{C}_0, \mathcal{P}_0, D_0)$ of length n with \mathcal{C}_0 a Kummer curve $\mathcal{C}_0 : y^N = f(x), \qquad N > n^{\varepsilon}, \ \varepsilon \in (0, 1).$

- Minimum distance of each code C_i is $\Delta(C_i) = \Delta(C_0) = 1 \frac{\deg D_0}{n}$.
- Last code C_r is a RS code of length n/N and dimension $k = \deg(D_0)/N + 1 < n/N$.

Proof length	< n
Round complexity	$< \log n$
Query complexity	$O(n^{1-\varepsilon})$
Prover complexity	$\widetilde{O}(n)$
Verifier complexity	$O(n^{1-\varepsilon})$

Question: Why not linear prover time and logarithmic query and verifier complexities (as in FRI)?

Main properties

Proximity testing to $C_0 = C(\mathcal{C}_0, \mathcal{P}_0, D_0)$ of length n with \mathcal{C}_0 a Kummer curve $\mathcal{C}_0 : y^N = f(x)$, $N > n^{\varepsilon}$, $\varepsilon \in (0, 1)$.

• Minimum distance of each code C_i is $\Delta(C_i) = \Delta(C_0) = 1 - \frac{\deg D_0}{n}$.

• Last code C_r is a RS code of length n/N and dimension $k = \deg(D_0)/N + 1 < n/N$.

Proof length	< n	
Round complexity	$< \log n$	
Query complexity	$< \alpha \cdot p_{max} \cdot \log n + k$	(repetition param α , $p_{max} := \max p_i$)
Prover complexity	$O(n) + \widetilde{O}(n/N)$	
Verifier complexity	$O(\log n) + \widetilde{O}(k)$	

Question: Why not linear prover time and logarithmic query and verifier complexities (as in FRI)? Recall final test " $f_r \stackrel{?}{\in} C_r$ ": the length n/N of the last code C_r is not constant. \rightsquigarrow One needs $N = |\mathcal{G}|$ to be large enough for better complexities.

However, if C_r is a RS code, membership test to C_r might be substituted by FRI.

	FRI	AG-IOPP
Number of rounds	as many as needed	limited by the size of ${\mathcal G}$ unless ${\mathcal C}_r \simeq {\mathbb P}^1$
	$err_{commit} \leq \frac{\dots}{ \mathbb{F} }$	
Commit error	divided by $pprox \left \mathbb{P}^1(\mathbb{F}) \right $	$ \mathcal{C}_i(\mathbb{F}) > \mathbb{F} $ Could we sample over the points of the curves?

On improving soundness: DEEP technique for AG codes? Proximity gaps?

Other foldable codes?

Good candidates from asymptotically good towers of curves (~> "nice" sequence of divisors?)