IOP of Proximity to Algebraic Geometry codes

Sarah Bordage Jade Nardi
November 19, 2020
https://eccc.weizmann.ac.il/report/2020/165/
LIX, Ecole Polytechnique, Institut Polytechnique de Paris
Inria

Algebraic Geometry (AG) codes

Let \mathcal{C} be an algebraic curve defined over a finite field \mathbb{F}.
Divisors. A divisor D on \mathcal{C} is a formal sum of points $D=\sum n_{P} P$.
Its degree is $\operatorname{deg} D:=\sum n_{P}$ and support is $\operatorname{Supp}(D):=\left\{P \in \mathcal{C} \mid n_{p} \neq 0\right\}$.
$D \leq D^{\prime}$ if $n_{P} \leq n_{P}^{\prime}$ for every P.
A function f on \mathcal{C} defines a principal divisor $(f):=\sum_{P} \underbrace{v_{P}(f)}_{\text {valuation }} P$.
Riemann-Roch space of $D . L_{\mathcal{C}}(D)=\{f \in \mathbb{F}(\mathcal{C}) \mid(f) \geq-D\} \cup\{0\}$.
Embedding of RR spaces: If $D \leq D^{\prime}$, then $L_{\mathcal{C}}(D) \subset L_{\mathcal{C}}\left(D^{\prime}\right)$.

AG codes

Given $\mathcal{P} \subset \mathcal{C}(\mathbb{F})$ of size $n:=|\mathcal{P}|$ and a divisor D on \mathcal{C} s.t. $\operatorname{Supp}(D) \cap \mathcal{P}=\emptyset$, the $\mathbf{A G}$ code $C=C(\mathcal{C}, \mathcal{P}, D)$ is defined as the image by ev : $L_{\mathcal{C}}(D) \rightarrow \mathbb{F}^{n}$.

We always choose D so that ev is injective: $\mathbb{F}^{n} \rightsquigarrow \mathbb{F}^{\mathcal{P}}$ and

$$
C(\mathcal{C}, \mathcal{P}, D)=\left\{f: \mathcal{P} \rightarrow \mathbb{F} \mid f \text { coincides with a fct in } L_{\mathcal{C}}(D)\right\} .
$$

Group action and Kani's splitting of Riemann-Roch spaces

Let \mathcal{C} be a curve over a field \mathbb{F} and let $\Gamma=\langle\gamma\rangle \simeq \mathbb{Z} / m \mathbb{Z}$ a group of automorphisms of \mathcal{C} s.t $\operatorname{gcd}(m,|\mathbb{F}|)=1$. Set the projection map $\pi: \mathcal{C} \rightarrow \mathcal{C}^{\prime}:=\mathcal{C} / \Gamma$. Take $\zeta \in \overline{\mathbb{F}}$ a primitive $m^{\text {th }}$ root of unity.

- Γ acts on the functions on $\mathcal{C}: \gamma \cdot f=f \circ \gamma$ for any fct f on \mathcal{C}.
- There exists a function μ on \mathcal{C} s.t. $\gamma \cdot \mu=\zeta \mu$ [Kani' 86$]$.

For any Γ-invariant divisor D on \mathcal{C}, the action of Γ on $L_{\mathcal{C}}(D)$ gives

$$
L_{\mathcal{C}}(D)=\bigoplus_{j=0}^{m-1} L_{\mathcal{C}}(D)_{j} \text { where } L_{\mathcal{C}}(D)_{j}:=\left\{g \in L_{\mathcal{C}}(D) \mid \gamma \cdot g=\zeta^{j} g\right\}
$$

[Kani'86] $L_{\mathcal{C}}(D)_{j} \simeq \mu^{j} \pi^{*}\left(L_{\mathcal{C}^{\prime}}\left(E_{j}\right)\right)$ where $E_{j}:=\left\lfloor\frac{1}{m} \pi_{*}(D+j(\mu))\right\rfloor^{1}$ is a divisor on \mathcal{C}^{\prime}.
Splitting of Riemann-Roch spaces: $L_{\mathcal{C}}(D)=\bigoplus_{j=0}^{m-1} \mu^{j} \pi^{*} L_{\mathcal{C}^{\prime}}\left(E_{j}\right)$

$$
\rightsquigarrow \text { For every } f \in L_{\mathcal{C}}(D) \text {, there exist } m \text { fcts } f_{j} \in L_{\mathcal{C}^{\prime}}\left(E_{j}\right) \text { s.t. } f=\sum_{j=0}^{m-1} \mu^{j} f_{j} \circ \pi \text {. }
$$

[^0]
Kani's result on $\mathcal{C}=\mathbb{P}^{1}$

[Kani''86]: $L_{\mathcal{C}}(D)=\bigoplus_{j=0}^{m-1} \mu^{j} \pi^{*} L_{\mathcal{C}^{\prime}}\left(\left\lfloor\frac{1}{m} \pi_{*}(D+j(\mu))\right\rfloor\right)$.
FRI context: For evaluation domain $\mathcal{P}=\langle[1: \omega]\rangle$ where ω has order 2^{r}.

- $\gamma:\left[X_{0}: X_{1}\right] \mapsto\left[X_{0}:-X_{1}\right]$ acts on \mathbb{P}^{1} and $\langle\gamma\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$,
- Define projection $\pi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ by $\pi\left[X_{0}: X_{1}\right]:=\left[X_{0}^{2}: X_{1}^{2}\right]$,

Consider the RS code $\operatorname{RS}[\mathbb{F}, \mathcal{P}, d+1]$ viewed as the AG code $C=C\left(\mathbb{P}^{1}, \mathcal{P}, d P_{\infty}\right)$, where $P_{\infty}=[0: 1]$.
Kani's result with $\mu=x:=\frac{X_{1}}{X_{0}}(\gamma \cdot x=-x)$ yields to

$$
\left((x)=[1: 0]-P_{\infty}\right)
$$

$$
L_{\mathbb{P}^{1}}\left(d P_{\infty}\right)=\pi^{*} L_{\mathbb{P}^{1}}\left(\left\lfloor\frac{d}{2}\right\rfloor P_{\infty}\right)+x \pi^{*} L_{\mathbb{P}^{1}}\left(\left\lfloor\frac{d-1}{2}\right\rfloor P_{\infty}\right)
$$

i.e. any polynomial f of degree $\leq d$ can be written $f(x)=f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$ with $\left[\begin{array}{l}\operatorname{deg} f_{0} \leq\left\lfloor\frac{d}{2}\right\rfloor, \\ \operatorname{deg} f_{1} \leq\left[\frac{d-1}{2}\right\rfloor\end{array}\right]$.
\rightarrow Proximity to $C=C(\mathcal{C}, \mathcal{P}, D)$ reduced to proximity to $C^{\prime}=C\left(\mathbb{P}^{1}, \mathcal{P}^{\prime},\left\lfloor\frac{d}{2}\right\rfloor P_{\infty}\right)$ where $\mathcal{P}^{\prime}=\pi(\mathcal{P})$.
Remark: For odd $d,\left\lfloor\frac{d}{2}\right\rfloor=\left\lfloor\frac{d-1}{2}\right\rfloor$, i.e. $L_{\mathbb{P}^{1}}\left(d P_{\infty}\right)$ is split into 2 "copies" of the same space.

Using Kani's result to fold

Let \mathcal{C} be a curve over a field \mathbb{F} on which acts $\Gamma \simeq \mathbb{Z} / m \mathbb{Z}$, with the projection map $\pi: \mathcal{C} \rightarrow \mathcal{C} / \Gamma$.
FRI's idea: proximity to an AG-code $C=C(\mathcal{C}, \mathcal{P}, D)$ reduced to proximity to an AG-code $C^{\prime}=C\left(\mathcal{C} / \Gamma, \mathcal{P}^{\prime}, D^{\prime}\right)$
We need: - a Γ-invariant divisor $D \stackrel{[K \text { aniris6] }}{\Longrightarrow} \underset{\substack{\mathcal{C}(D)}}{f}=\sum_{j=1}^{m-1} \mu^{j} \underset{L_{\mathcal{C} / \Gamma}\left(E_{j}\right)}{f_{j}} \circ \pi$.

- an evaluation set $\mathcal{P}=$ union of Γ-orbits of size $|\Gamma|$ (Γ acts freely on \mathcal{P}).

Take $\mathcal{P}^{\prime}=\pi(\mathcal{P})\left(\left|\mathcal{P}^{\prime}\right|=|\mathcal{P}| / m\right)$ and D^{\prime} is a divisor on \mathcal{C} / Γ s.t. $L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right) \supseteq L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$.

1. Split $f: \mathcal{P} \rightarrow \mathbb{F}$ into m functions $f_{j}: \mathcal{P}^{\prime} \rightarrow \mathbb{F}$.
2. For any $z \in \mathbb{F}$, define folding of f as the function Fold $[f, z]: \mathcal{P}^{\prime} \rightarrow \mathbb{F}$ s.t. Fold $[f, z]=\sum_{j=0}^{m-1} z^{j} f_{j}$.
\rightarrow Fold $[\cdot, z](C) \subseteq C^{\prime}$

The folding operator

(First attempt) If we define Fold $[f, z]=\sum_{j=0}^{m-1} z^{j} f_{j}$:
\checkmark Completeness:
Fold $[\cdot, z](C) \subseteq C^{\prime}$.
\checkmark Locality:
For any $P \in \mathcal{P}^{\prime}$, compute Fold $[f, z](P)$ with m queries to f.
interpolate the set of m points $\left\{(\mu(Q), f(Q)) \mid Q \in \pi^{-1}(\{P\})\right\}$.
\mathbf{x} Distance preservation: If $\Delta(f, C)>\delta$, then $\Delta\left(\right.$ Fold $\left.[f, z], C^{\prime}\right)>\delta^{\prime}$ (w.h.p.).
We need to ensure that $f_{j} \notin L\left(D^{\prime}\right) \backslash L\left(E_{j}\right)$!

The folding operator

(First attempt) If we define Fold $[f, z]=\sum_{j=0}^{m-1} z^{j} f_{j}$:
\checkmark Completeness: Fold $[\cdot, z](C) \subseteq C^{\prime}$.
\checkmark Locality: For any $P \in \mathcal{P}^{\prime}$, compute Fold $[f, z](P)$ with m queries to f.
interpolate the set of m points $\left\{(\mu(Q), f(Q)) \mid Q \in \pi^{-1}(\{P\})\right\}$.
\mathbf{x} Distance preservation: If $\Delta(f, C)>\delta$, then $\Delta\left(\right.$ Fold $\left.[f, z], C^{\prime}\right)>\delta^{\prime}$ (w.h.p.).
We need to ensure that $f_{j} \notin L\left(D^{\prime}\right) \backslash L\left(E_{j}\right)$!
Define balancing functions $\nu_{j} \in \mathbb{F}(\mathcal{C} / \Gamma)$ s.t. $h \in L\left(E_{j}\right)$ iff both $h \in L\left(D^{\prime}\right)$ and $\nu_{j} h \in L\left(D^{\prime}\right)$.

$$
\text { (on } \mathbb{P}^{1}: \text { if } \operatorname{deg} \nu=1 \text {, then } \operatorname{deg} h \leq d-1 \text { iff } \operatorname{deg} h, \operatorname{deg} \nu h \leq d \text {) }
$$

We assume there exists $\nu_{j} \in \mathbb{F}(\mathcal{C} / \Gamma)$ such that $\left(\nu_{j}\right)_{\infty}=D^{\prime}-E_{j}$.
(for simplicity, take $\left.D^{\prime}=E_{0}.\right)$
\longrightarrow Need to carefully define D^{\prime}, otherwise such functions ν_{j} may not exist.

The folding operator

(First attempt) If we define Fold $[f, z]=\sum_{j=0}^{m-1} z^{j} f_{j}$:
\checkmark Completeness: Fold $[\cdot, z](C) \subseteq C^{\prime}$.
\checkmark Locality:
For any $P \in \mathcal{P}^{\prime}$, compute Fold $[f, z](P)$ with m queries to f.
interpolate the set of m points $\left\{(\mu(Q), f(Q)) \mid Q \in \pi^{-1}(\{P\})\right\}$.
\mathbf{x} Distance preservation: If $\Delta(f, C)>\delta$, then $\Delta\left(\right.$ Fold $\left.[f, z], C^{\prime}\right)>\delta^{\prime}$ (w.h.p.).
We need to ensure that $f_{j} \notin L\left(D^{\prime}\right) \backslash L\left(E_{j}\right)$!
Define balancing functions $\nu_{j} \in \mathbb{F}(\mathcal{C} / \Gamma)$ s.t. $h \in L\left(E_{j}\right)$ iff both $h \in L\left(D^{\prime}\right)$ and $\nu_{j} h \in L\left(D^{\prime}\right)$.

$$
\text { (on } \mathbb{P}^{1}: \text { if } \operatorname{deg} \nu=1 \text {, then } \operatorname{deg} h \leq d-1 \text { iff } \operatorname{deg} h, \operatorname{deg} \nu h \leq d \text {) }
$$

We assume there exists $\nu_{j} \in \mathbb{F}(\mathcal{C} / \Gamma)$ such that $\left(\nu_{j}\right)_{\infty}=D^{\prime}-E_{j} . \quad$ (for simplicity, take $D^{\prime}=E_{0}$. .)
\longrightarrow Need to carefully define D^{\prime}, otherwise such functions ν_{j} may not exist.
(Final attempt) For any $\left(z_{1}, z_{2}\right) \in \mathbb{F}^{2}$, define Fold $\left[f,\left(z_{1}, z_{2}\right)\right]: \mathcal{P}^{\prime} \rightarrow \mathbb{F}$ s.t.

$$
\text { Fold }\left[f,\left(z_{1}, z_{2}\right)\right]=\sum_{j=0}^{m-1} z_{1}^{j} f_{j}+\sum_{j=1}^{m-1} z_{2}^{j} \nu_{j} f_{j}
$$

Foldable AG codes

An AG code $C_{0}=C\left(\mathcal{C}_{0}, \mathcal{P}_{0}, D_{0}\right)$ is said to be foldable if we can repeat the previous process:

1. There exists a large solvable group $\mathcal{G} \in \operatorname{Aut}\left(\mathcal{C}_{0}\right)$ acting freely on $\mathcal{P}_{0}, \mathcal{G}=\mathcal{G}_{0} \triangleright \mathcal{G}_{1} \triangleright \cdots \triangleright \mathcal{G}_{r}=1$ $\rightarrow \Gamma_{i}:=\mathcal{G}_{i} / \mathcal{G}_{i+1} \simeq \mathbb{Z} / p_{i} \mathbb{Z}$
\rightarrow Sequence of curves $\left(\mathcal{C}_{i}\right)$ s.t. $\mathcal{C}_{i+1}:=\mathcal{C}_{i} / \Gamma_{i}$
\rightarrow Sequence of evaluation points $\left(\mathcal{P}_{i}\right)$ s.t. $\mathcal{P}_{i+1}=\pi_{i}\left(\mathcal{P}_{i}\right) \rightsquigarrow\left|\mathcal{P}_{i+1}\right|=\left|\mathcal{P}_{i}\right| / p_{i}$
2. There exists a "nice" sequence of divisors $\left(D_{i}\right)$, i.e. for each i :

- D_{i} is supported by Γ_{i}-fixed points,
- for every $0 \leq j<p_{i}, E_{i, j} \leq D_{i+1}, \quad\left([\right.$ Kani' 86$] L\left(D_{i}\right)$ is split into p_{i} smaller spaces $\left.L\left(E_{i, j}\right)\right)$
- for every $0 \leq j<p_{i}$, there exists $\nu_{i+1, j} \in \mathbb{F}\left(\mathcal{C}_{i+1}\right)$ s.t. $\left(\nu_{i+1, j}\right)_{\infty}=D_{i+1}-E_{i, j}$.

A foldable AG code $C_{0}=C\left(\mathcal{C}_{0}, \mathcal{P}_{0}, D_{0}\right)$ induces a sequence of $\mathbf{A G} \operatorname{codes}\left(C_{i}=C\left(\mathcal{C}_{i}, \mathcal{P}_{i}, D_{i}\right)\right)$.

Overview of the AG-IOPP

COMMIT Phase

$$
\begin{gathered}
f_{1}=\text { Fold }\left[f_{0}, \boldsymbol{z}_{0}\right] \\
f_{2}=\operatorname{Fold}\left[f_{1}, \boldsymbol{z}_{1}\right] \\
\vdots \\
f_{r}=\text { Fold }\left[f_{r-1}, \boldsymbol{z}_{r-1}\right]
\end{gathered}
$$

Overview of the AG-IOPP

QUERY Phase

Round consistency tests:
Sample $Q_{0} \in \mathcal{P}_{0}$,
Define query path $\left(Q_{1}, \ldots, Q_{r}\right)$ s.t. $Q_{i+1}=\pi_{i}\left(Q_{i}\right)$.

$$
\begin{aligned}
& f_{1}\left(Q_{1}\right) \stackrel{?}{=} \text { Fold }\left[f_{0}, \boldsymbol{z}_{0}\right]\left(Q_{1}\right) \\
& f_{2}\left(Q_{2}\right) \stackrel{?}{=} \text { Fold }\left[f_{1}, \boldsymbol{z}_{1}\right]\left(Q_{2}\right)
\end{aligned}
$$

$f_{r}\left(Q_{r}\right) \stackrel{?}{=}$ Fold $\left[f_{r-1}, \boldsymbol{z}_{r-1}\right]\left(Q_{r}\right)$
Final test: $f_{r} \stackrel{?}{\in} C\left(\mathcal{C}_{r}, \mathcal{P}_{r}, D_{r}\right)$

Overview of the AG-IOPP

Completeness:
If $f_{0} \in C_{0}, \mathcal{V}$ accepts with proba 1.

Soundness:
(relies on [BKS18] and [BGKS19])
If f_{0} is δ-far from C_{0}, \mathcal{V} accepts with proba

$$
\operatorname{err}(\delta)<\operatorname{err}_{\text {commit }}+\left(\operatorname{err}_{\text {query }}(\delta)\right)^{\alpha}
$$

α : repetition parameter

A family of foldable codes on Kummer curves

Assume $\operatorname{gcd}(N, d)=1$ and $\operatorname{gcd}(N,|\mathbb{F}|)=1$.
The group $\mathbb{Z} / N \mathbb{Z}$ acts on $\mathcal{C}_{0}\left((x, y) \mapsto(x, \zeta y)\right.$ for $\left.\zeta^{N}=1\right)$ and is solvable. Write $N=\prod_{i=0}^{r-1} p_{i}$ and $N_{i}=\prod_{j=i}^{r-1} p_{j}$

$$
\mathbb{Z} / N \mathbb{Z} \triangleright \mathbb{Z} / N_{1} \mathbb{Z} \triangleright \mathbb{Z} / N_{2} \mathbb{Z} \triangleright \cdots \triangleright \mathbb{Z} / N_{r-1} \mathbb{Z} \triangleright 1
$$

$\Rightarrow \Gamma_{i}=\left\langle\gamma_{i}\right\rangle \simeq \mathbb{Z} / p_{i} \mathbb{Z}\left(\gamma_{i}:(x, y) \mapsto\left(x, \zeta_{i} y\right)\right.$ with $\left.\zeta_{i}^{p_{i}}=1\right)$

Sequence of divisors (D_{i}) supported by Γ_{i}-fixed points: $P_{\ell}:=\left(\alpha_{\ell}, 0\right)$ and P_{∞}^{i} (unique point at ∞)
Any fct $f \in L_{\mathcal{C}_{i}}\left(D_{i}\right)$ can be written $\left(\mu_{i}=y\right.$ as $\left.\gamma_{i} \cdot y=\zeta_{i} y\right)$

$$
\begin{gathered}
\mathbb{Z} / p_{0} \mathbb{Z} \subset \mathcal{C}_{0}: y^{N}=f(x)=\prod_{\ell=1}^{d}\left(x-\alpha_{\ell}\right) \\
\downarrow \pi_{0}
\end{gathered}
$$

$$
\begin{aligned}
\mathbb{Z} / p_{1} \mathbb{Z} \subset & \mathcal{C}_{1}: y^{\frac{N}{p_{0}}}=f(x) \\
& \downarrow \pi_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{Z} / p_{i} \mathbb{Z} \bigcirc \mathcal{C}_{i}: y^{N_{i}}=f(x) \\
& \ddagger \pi_{i}:(x, y) \mapsto\left(x, y^{p_{i}}\right) \\
& \vdots \\
& \mathbb{P}^{1} \simeq \mathcal{C}_{r}: y=f(x)
\end{aligned}
$$

$$
f(x, y)=\sum_{j=0}^{p_{i}-1} y^{j} f_{j}\left(x, y^{p_{i}}\right) \text { with } f_{j} \in L_{\mathcal{C}_{i+1}}\left(\left\lfloor\frac{\pi_{i *}(D)-j d P_{\infty}^{i+1}+j \sum P_{\ell}}{p_{i}}\right\rfloor\right)
$$

The code $C(\mathcal{C}, \mathcal{P}, D)$ is foldable for $D=\sum_{\ell=1}^{d} a_{\ell} P_{\ell}+b P_{\infty}^{0}$ if $N \mid a_{\ell}, b$ and $d \equiv-1 \bmod N$.

Main properties

Proximity testing to $C_{0}=C\left(\mathcal{C}_{0}, \mathcal{P}_{0}, D_{0}\right)$ of length n with \mathcal{C}_{0} a Kummer curve

$$
\mathcal{C}_{0}: y^{N}=f(x), \quad N>n^{\varepsilon}, \varepsilon \in(0,1)
$$

- Minimum distance of each code C_{i} is $\Delta\left(C_{i}\right)=\Delta\left(C_{0}\right)=1-\frac{\operatorname{deg} D_{0}}{n}$.
- Last code C_{r} is a RS code of length n / N and dimension $k=\operatorname{deg}\left(D_{0}\right) / N+1<n / N$.

Proof length	$<n$
Round complexity	$<\log n$
Query complexity	$O\left(n^{1-\varepsilon}\right)$
Prover complexity	$\widetilde{O}(n)$
Verifier complexity	$O\left(n^{1-\varepsilon}\right)$

Question: Why not linear prover time and logarithmic query and verifier complexities (as in FRI)?

Main properties

Proximity testing to $C_{0}=C\left(\mathcal{C}_{0}, \mathcal{P}_{0}, D_{0}\right)$ of length n with \mathcal{C}_{0} a Kummer curve

$$
\mathcal{C}_{0}: y^{N}=f(x), \quad N>n^{\varepsilon}, \varepsilon \in(0,1)
$$

- Minimum distance of each code C_{i} is $\Delta\left(C_{i}\right)=\Delta\left(C_{0}\right)=1-\frac{\operatorname{deg} D_{0}}{n}$.
- Last code C_{r} is a RS code of length n / N and dimension $k=\operatorname{deg}\left(D_{0}\right) / N+1<n / N$.

```
Proof length <n
Round complexity < logn
```



```
Prover complexity }O(n)+\widetilde{O}(n/N
Verifier complexity }O(\operatorname{log}n)+\widetilde{O}(k
```

Question: Why not linear prover time and logarithmic query and verifier complexities (as in FRI)? Recall final test " $f_{r} \stackrel{?}{\in} C_{r}$ " : the length n / N of the last code C_{r} is not constant. \rightsquigarrow One needs $N=|\mathcal{G}|$ to be large enough for better complexities.

However, if C_{r} is a RS code, membership test to C_{r} might be substituted by FRI.

	FRI	AG-IOPP
Number of rounds	as many as needed	limited by the size of \mathcal{G} unless $\mathcal{C}_{r} \simeq \mathbb{P}^{1}$
Commit error	$\operatorname{err}_{\text {commit }} \leq \frac{\cdots}{\|\mathbb{F}\|}$	
	divided by $\approx\left\|\mathbb{P}^{1}(\mathbb{F})\right\|$	$\left\|\mathcal{C}_{i}(\mathbb{F})\right\|>\|\mathbb{F}\|$ Could we sample over the points of the curves?

On improving soundness: DEEP technique for AG codes? Proximity gaps?
Other foldable codes?
Good candidates from asymptotically good towers of curves (\rightsquigarrow "nice" sequence of divisors?)

[^0]: ${ }^{1}$ Notation: $\left\lfloor\frac{1}{n} D\right\rfloor:=\sum\left\lfloor\frac{n_{P}}{n}\right\rfloor P$, for a divisor $D=\sum n_{P} P$ and integer $n>0$.

