Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Julien Lavauzelle, Jade Nardi
Institut de recherche mathématique de Rennes
INRIA Saclay

17/10/2019

Partially funded by ANR Manta

Weighted Projective Reed-Muller codes and η-lines
Fix $\eta \in \mathbb{N}^{*}$. Consider the plane weighted Reed-Muller code of weight $(1, \eta)$:

$$
\operatorname{WRM}_{q}^{\eta}(d):=\left\langle\operatorname{ev}_{\mathbb{A}\left(\mathbb{F}_{q}\right)}\left(x^{i} y^{j}\right),(i, j) \in \mathbb{N}^{2} \mid i+\eta j \leq d\right\rangle \subset \mathbb{F}_{q}^{q^{2}}
$$

$R k: \mathrm{WRM}_{q}^{\eta}(d)=\mathrm{RM}_{q}(2, d)$.
Can be seen as an AG code on $\mathbb{P}^{(1,1, \eta)}$ outside the line ($X_{0}=0$) :

$$
\mathrm{WRM}_{q}^{\eta}(d)=\left\langle\widetilde{\mathrm{ev}}\left(X_{0}^{d-i-\eta j} X_{1}^{i} X_{2}^{j}\right),(i, j) \in \mathbb{N}^{2} \mid i+\eta j \leq d\right\rangle
$$

Weighted Projective Reed-Muller codes and η-lines

Fix $\eta \in \mathbb{N}^{*}$. Consider the plane weighted Reed-Muller code of weight $(1, \eta)$:

$$
\operatorname{WRM}_{q}^{\eta}(d):=\left\langle\operatorname{ev}_{\mathbb{A}\left(\mathbb{F}_{q}\right)}\left(x^{i} y^{j}\right),(i, j) \in \mathbb{N}^{2} \mid i+\eta j \leq d\right\rangle \subset \mathbb{F}_{q}^{q^{2}}
$$

$R k: \mathrm{WRM}_{q}^{\eta}(d)=\mathrm{RM}_{q}(2, d)$.
Can be seen as an AG code on $\mathbb{P}^{(1,1, \eta)}$ outside the line ($X_{0}=0$):

$$
\mathrm{WRM}_{q}^{\eta}(d)=\left\langle\widetilde{\mathrm{ev}}\left(X_{0}^{d-i-\eta j} X_{1}^{i} X_{2}^{j}\right),(i, j) \in \mathbb{N}^{2} \mid i+\eta j \leq d\right\rangle
$$

Aim: Highlight some local decoding properties

Definition (η-line)

(Non-vertical) η-line :

- on $\mathbb{P}^{(1,1, \eta)}$: Set of zeroes of $P\left(X_{0}, X_{1}, X_{2}\right)=X_{2}-\Phi\left(X_{0}, X_{1}\right)$, where $\phi \in \mathbb{F}_{q}\left[X_{0}, X_{1}\right]_{h}$ and $\operatorname{deg} \phi=\eta$.
- on \mathbb{A}^{2} : Set of zeroes of $P(x, y)=y-\phi(x)$, where $\phi \in \mathbb{F}_{q}[X]$ and $\operatorname{deg} \phi \leq \eta$.

Parametrization of η-lines

Recalls:

- $\operatorname{WRM}_{q}^{\eta}(d):=\left\langle\operatorname{ev}\left(x^{i} y^{j}\right),(i, j) \in \mathbb{N}^{2} \mid i+\eta j \leq d\right\rangle$
- η-line: $y=\phi(x)$ with $\phi \in \mathbb{F}_{q}[X]$ and $\operatorname{deg} \phi \leq \eta$.

Parametrization of an η-line: $t \mapsto(t, \phi(t))$
Set of embeddings of η-lines into the affine plane \mathbb{A}^{2} :

$$
\Phi_{\eta}=\left\{L_{\phi}: t \mapsto(t, \phi(t)) \mid \phi \in \mathbb{F}_{q}[T] \text { and } \operatorname{deg} \phi \leq \eta\right\}
$$

Parametrization of η-lines

Recalls:

- $\mathrm{WRM}_{q}^{\eta}(d):=\left\langle\operatorname{ev}\left(x^{i} y^{j}\right),(i, j) \in \mathbb{N}^{2} \mid i+\eta j \leq d\right\rangle$
- η-line: $y=\phi(x)$ with $\phi \in \mathbb{F}_{q}[X]$ and $\operatorname{deg} \phi \leq \eta$.

Parametrization of an η-line: $t \mapsto(t, \phi(t))$
Set of embeddings of η-lines into the affine plane \mathbb{A}^{2} :

$$
\Phi_{\eta}=\left\{L_{\phi}: t \mapsto(t, \phi(t)) \mid \phi \in \mathbb{F}_{q}[T] \text { and } \operatorname{deg} \phi \leq \eta\right\}
$$

Lemma

Any polynomial $f \in \mathbb{F}_{q}[X, Y]$ with $\operatorname{deg}_{(1, \eta)} \leq d$ satisfies $\operatorname{ev}(f \circ L) \in \operatorname{RS}_{q}(d)$ for any $L \in \Phi_{\eta}$.

Check on monomials: set $f=X^{i} Y^{j}$ with $i+\eta j \leq d$. $\forall \phi \in \Phi_{\eta},\left(f \circ L_{\phi}\right)(T)=T^{i} \phi(T)^{j}$ has degree less than d.

PIR Protocol

PIR Protocol

How to retrieve a datum stored on servers without giving any information about it?
\sim Aim of Private Information Retrieval protocols

PIR Protocol

How to retrieve a datum stored on servers without giving any information about it?
\sim Aim of Private Information Retrieval protocols [Augot,Levy-dit-Vehel,Shikfa (2014)] Share the database on several servers.

PIR Protocol

How to retrieve a datum stored on servers without giving any information about it?
\sim Aim of Private Information Retrieval protocols [Augot,Levy-dit-Vehel,Shikfa (2014)] Share the database on several servers.
$\mathbb{A}^{2}\left(\mathbb{F}_{q}\right)=\bigsqcup_{i=1}^{q} L_{i}\left(\mathbb{F}_{q}\right)$
Database: Codewords of $\mathrm{WRM}_{q}^{\eta}(d)$ shared by \mathbf{q} servers.

PIR Protocol linked to $\mathrm{WRM}_{a}^{\eta}(d)$

(1) Word of $\mathrm{WRM}_{q}^{\eta}(d)$ restricted along an η-line $=$ codeword of $\mathrm{RS}_{q}(d)$
(2) An η-line meets each line $x=a$ at a unique point.

PIR Protocol linked to $\mathrm{WRM}_{a}^{\eta}(d)$

(1) Word of $\mathrm{WRM}_{q}^{\eta}(d)$ restricted along an η-line $=$ codeword of $\mathrm{RS}_{q}(d)$
(2) An η-line meets each line $x=a$ at a unique point.

> Wanted datum: $c_{P_{0}}$ with $c \in \mathrm{WRM}_{q}^{\eta}(d)$ and $d<q-2$.

PIR Protocol linked to $\mathrm{WRM}_{a}^{\eta}(d)$

(1) Word of $\mathrm{WRM}_{q}^{\eta}(d)$ restricted along an η-line $=$ codeword of $\mathrm{RS}_{q}(d)$
(2) An η-line meets each line $x=a$ at a unique point.

> Wanted datum: $c_{P_{0}}$ with $c \in \mathrm{WRM}_{q}^{\eta}(d)$ and $d<q-2$.

Randomly pick an η-line L containing P_{0}.

PIR Protocol linked to $\mathrm{WRM}_{a}^{\eta}(d)$

(1) Word of $\mathrm{WRM}_{q}^{\eta}(d)$ restricted along an η-line $=$ codeword of $\mathrm{RS}_{q}(d)$
(2) An η-line meets each line $x=a$ at a unique point.

> Wanted datum: $c_{P_{0}}$ with $c \in \mathrm{WRM}_{q}^{\eta}(d)$ and $d<q-2$.

Randomly pick an η-line L containing P_{0}.
Server \leftrightarrow line not containing P_{0} : ask for $c_{L_{i} \cap L}$

PIR Protocol linked to $\mathrm{WRM}_{a}^{\eta}(d)$

(1) Word of $\mathrm{WRM}_{q}^{\eta}(d)$ restricted along an η-line $=$ codeword of $\mathrm{RS}_{q}(d)$
(2) An η-line meets each line $x=a$ at a unique point.

> Wanted datum: $c_{P_{0}}$ with $c \in \mathrm{WRM}_{q}^{\eta}(d)$ and $d<q-2$.

Randomly pick an η-line L containing P_{0}.
Server \leftrightarrow line not containing P_{0} : ask for $c_{L_{i} \cap L}$
Server \leftrightarrow line containing P_{0} : ask for $c_{P_{1}}$ for P_{1} random on this line

PIR Protocol linked to $\mathrm{WRM}_{a}^{\eta}(d)$

(1) Word of $\mathrm{WRM}_{q}^{\eta}(d)$ restricted along an η-line $=$ codeword of $\mathrm{RS}_{q}(d)$
(2) An η-line meets each line $x=a$ at a unique point.

> Wanted datum: $c_{P_{0}}$
> with $c \in \mathrm{WRM}_{q}^{\eta}(d)$
> and $d<q-2$.

Randomly pick an η-line L containing P_{0}.
Server \leftrightarrow line not containing P_{0} : ask for $c_{L_{i} \cap L}$
Server \leftrightarrow line containing P_{0} : ask for $c_{P_{1}}$ for P_{1} random on this line
\Rightarrow Word of $\mathrm{RS}(d)$ with 1 error $=$ easily correctable!

What's new?

Case $\eta=1$ already known (PIR protocol from locally decodable codes) Because restricting a word of $\mathrm{RM}_{q}(2, d)$ along a line gives a word of $\mathrm{RS}_{q}(d)$.

Why take $\eta>1$?

What's new?

Case $\eta=1$ already known (PIR protocol from locally decodable codes) Because restricting a word of $\operatorname{RM}_{q}(2, d)$ along a line gives a word of $\mathrm{RS}_{q}(d)$.

Why take $\eta>1$? What if servers communicate...?
η-line \leftrightarrow Polynomial $\phi \in \mathbb{F}_{q}[X]$ with $\operatorname{deg}(\phi) \leq \eta$.

Case $\eta=1$ already known (PIR protocol from locally decodable codes) Because restricting a word of $\mathrm{RM}_{q}(2, d)$ along a line gives a word of $\mathrm{RS}_{q}(d)$.

Why take $\eta>1$? What if servers communicate...?
η-line \leftrightarrow Polynomial $\phi \in \mathbb{F}_{q}[X]$ with $\operatorname{deg}(\phi) \leq \eta$.
$\eta=1 \Rightarrow$ the protocol does not resist to colluding servers!
$\eta>1 \Rightarrow$ the protocol resists to the collusion of η servers!

Case $\eta=1$ already known (PIR protocol from locally decodable codes) Because restricting a word of $\mathrm{RM}_{q}(2, d)$ along a line gives a word of $\mathrm{RS}_{q}(d)$.

Why take $\eta>1$? What if servers communicate...?
η-line \leftrightarrow Polynomial $\phi \in \mathbb{F}_{q}[X]$ with $\operatorname{deg}(\phi) \leq \eta$.
$\eta=1 \Rightarrow$ the protocol does not resist to colluding servers!
$\eta>1 \Rightarrow$ the protocol resists to the collusion of η servers!
... Counterpart...

Case $\eta=1$ already known (PIR protocol from locally decodable codes) Because restricting a word of $\mathrm{RM}_{q}(2, d)$ along a line gives a word of $\mathrm{RS}_{q}(d)$.

Why take $\eta>1$? What if servers communicate...?
η-line \leftrightarrow Polynomial $\phi \in \mathbb{F}_{q}[X]$ with $\operatorname{deg}(\phi) \leq \eta$.
$\eta=1 \Rightarrow$ the protocol does not resist to colluding servers!
$\eta>1 \Rightarrow$ the protocol resists to the collusion of η servers!
... Counterpart... For $d<q-1$,

$$
\operatorname{dim} \mathrm{WRM}_{q}^{\eta}(d) \approx \frac{d^{2}}{2 \eta}
$$

decreases as η grows \Rightarrow Loss of storage when η grows.

Can we enhance the dimension while keeping the resistance to collusions?

Only property useful to the PIR protocol: Restricting words along η-lines gives $\mathrm{RS}(d)$ codewords.

Can we enhance the dimension while keeping the resistance to collusions?

Only property useful to the PIR protocol:
Restricting words along η-lines gives $\mathrm{RS}(d)$ codewords.
\sim Lifting process introduced by Guo,Kopparty,Sudan (2013)

Definition (η-lifting of a Reed-Solomon code)

Let q be a prime power. The η-lifting of the Reed-Solomon code $\mathrm{RS}_{q}(d)$ is the code of length $n=q^{2}$ defined as follows:
$\operatorname{Lift}^{\eta}\left(\operatorname{RS}_{q}(d)\right)=\left\{\operatorname{ev}_{\mathbb{F}_{q}^{2}}(f) \mid f \in \mathbb{F}_{q}[X, Y], \forall L \in \Phi_{\eta}, \operatorname{ev}_{\mathbb{F}_{q}}(f \circ L) \in \operatorname{RS}_{q}(d)\right\}$.

Recall: $\Phi_{\eta}=\left\{L_{\phi}: t \mapsto(t, \phi(t)) \mid \phi \in \mathbb{F}_{q}[T]\right.$ and $\left.\operatorname{deg} \phi \leq \eta\right\}$.
Of course, $\mathrm{WRM}_{q}^{\eta}(d) \subset \operatorname{Lift}^{\eta} \operatorname{RS}_{q}(d)$.
Question: $\mathrm{WRM}_{q}^{\eta}(d) \mp \operatorname{Lift}^{\eta} \mathrm{RS}_{q}(d)$?

Example of $\mathrm{WRM}_{d}^{\eta}(d) \varsubsetneqq \operatorname{Lift}^{\eta}\left(\mathrm{RS}_{q}(d)\right)$

Let $q=4, \eta=2$ and $d=2 . \mathrm{WRM}_{q}^{\eta}\left(d,(1)=\left\langle\operatorname{ev}\left(X^{i} Y^{j}\right)\right\rangle\right.$ with

$$
(i, j) \in\{(0,0),(0,1),(1,0),(2,0)\} .
$$

Take $f(X, Y)=Y^{2} \in \mathbb{F}_{4}[X, Y], \mathrm{WRM}_{4}^{2}(2)$. η-line: $L(T)=\left(T, a T^{2}+b T+c\right) \in \Phi_{2}$, with $a, b, c \in \mathbb{F}_{4}$.
For every $t \in \mathbb{F}_{4}$,

$$
(f \circ L)(t)=\left(a t^{2}+b t+c\right)^{2}=a^{2} t^{4}+b^{2} t^{2}+c^{2}=b^{2} t^{2}+a^{2} t+c
$$

$\Rightarrow \operatorname{ev}_{\mathbb{F}_{4}}(f \circ L) \in \operatorname{RS}_{4}(2)$ for every $L \in \Phi_{2}$.

Example of $\mathrm{WRM}_{a}^{\eta}(d) \mp \operatorname{Lift}^{\eta}\left(\mathrm{RS}_{q}(d)\right)$

Let $q=4, \eta=2$ and $d=2 . \operatorname{WRM}_{q}^{\eta}\left(d,(1)=\left\langle\operatorname{ev}\left(X^{i} Y^{j}\right)\right\rangle\right.$ with

$$
(i, j) \in\{(0,0),(0,1),(1,0),(2,0)\}
$$

Take $f(X, Y)=Y^{2} \in \mathbb{F}_{4}[X, Y] \backslash \mathrm{WRM}_{4}^{2}(2)$.
η-line: $L(T)=\left(T, a T^{2}+b T+c\right) \in \Phi_{2}$, with $a, b, c \in \mathbb{F}_{4}$.
For every $t \in \mathbb{F}_{4}$,

$$
\begin{aligned}
& \quad(f \circ L)(t)=\left(a t^{2}+b t+c\right)^{2} \stackrel{\mathbf{1}}{=} a^{2} t^{4}+b^{2} t^{2}+c^{2} \stackrel{\text { 2 }}{=} b^{2} t^{2}+a^{2} t+c \\
& \Rightarrow \operatorname{ev}_{\mathbb{F}_{4}}(f \circ L) \in \operatorname{RS}_{4}(2) \text { for every } L \in \Phi_{2}
\end{aligned}
$$

$\mathrm{WRM}_{4}^{2}(2) \mp \operatorname{Lift}^{2}\left(\operatorname{RS}_{4}(2)\right)$.
Two phenomena:
(1) Vanishing coefficients in characteristic p,
(2) $t^{q}=t$ for $t \in \mathbb{F}_{q}$.
(1) Vanishing coefficients in characteristic p. In the previous example, on \mathbb{F}_{4},

$$
\left(a T^{2}+b T+c\right)^{2}=a^{2} T^{4}+b^{2} T^{2}+c^{2}
$$

\Rightarrow No monomials of odd power.
(1) Vanishing coefficients in characteristic p.

In the previous example, on \mathbb{F}_{4},

$$
\left(a T^{2}+b T+c\right)^{2}=a^{2} T^{4}+b^{2} T^{2}+c^{2}
$$

\Rightarrow No monomials of odd power.
Strategy:
Determining the monomials $X^{i} Y^{j}$ s.t. $\operatorname{ev}\left(T^{i} \phi(T)^{j}\right) \in \mathrm{RS}_{q}(d)$.

1st step:

Which monomials appear in $\phi(T)^{j}$ when $\operatorname{deg}(\phi) \leq \eta$ for a fixed j ?

Fix $\phi(T)=\sum_{m=0}^{\eta} a_{m} T^{m} \in \mathbb{F}_{q}[T]$. The multinomial theorem gives

$$
\phi(T)^{j}=\sum_{k_{1}+\cdots+k_{\eta} \leq j} \underbrace{\binom{j}{\mathbf{k}}}_{\text {multinomial coeff. }} \lambda_{\mathbf{k}} T^{k_{1}+2 k_{2}+\cdots+\eta k_{\eta}},
$$

where $\lambda_{\mathbf{k}}$ only depends on a_{0}, \ldots, a_{η} and \mathbf{k}.

Fix $\phi(T)=\sum_{m=0}^{\eta} a_{m} T^{m} \in \mathbb{F}_{q}[T]$. The multinomial theorem gives

$$
\phi(T)^{j}=\sum_{k_{1}+\cdots+k_{\eta} \leq j} \underbrace{\binom{j}{\mathbf{k}}}_{\text {multinomial coeff. }} \lambda_{\mathbf{k}} T^{k_{1}+2 k_{2}+\cdots+\eta k_{\eta}},
$$

where $\lambda_{\mathbf{k}}$ only depends on a_{0}, \ldots, a_{η} and \mathbf{k}.

$$
\phi(T)^{j}=\sum_{\alpha \in \mathbb{N}} c_{\alpha} T^{\alpha}, \text { with } c_{\alpha}=\sum_{\mathbf{k} \in K_{\alpha}}\binom{j}{\mathbf{k}} \lambda_{\mathbf{k}}
$$

where

$$
K_{\alpha}=\left\{\mathbf{k} \in \mathbb{N}^{\eta} \mid \sum_{\ell=1}^{\eta} k_{\ell} \leq j \text { and } \sum_{\ell=1}^{\eta} \ell k_{\ell}=\alpha\right\}
$$

Claim: $c_{\alpha}=0$ for every $\phi \in \Phi_{\eta}$ iif $\binom{j}{\mathbf{k}}=0$ for every $\mathbf{k} \in K_{\alpha}$.
The monomial T^{α} appears as a term of $\phi(T)^{j}$ iif there exists $\mathbf{k} \in K_{\alpha}$ s.t. $\binom{j}{\mathrm{k}} \neq 0$.

Recall: The monomial T^{α} appears in some $\phi(T)^{j}$ iif

$$
\exists \mathbf{k} \in \mathbb{N}^{\eta} \text { s.t. }|\mathbf{k}| \leq j \text { and } \sum_{\ell=1}^{\eta} \ell k_{\ell}=\alpha,\binom{j}{\mathbf{k}} \neq 0,
$$

where $\binom{j}{\mathbf{k}}=\binom{j}{k_{1}}\binom{j-k_{1}}{k_{2}}\binom{j-k_{1}-k_{2}}{k_{3}} \ldots\binom{j-k_{1}-k_{2}-\cdots-k_{\eta-1}}{k_{\eta}}$.

Recall: The monomial T^{α} appears in some $\phi(T)^{j}$ iif

$$
\exists \mathbf{k} \in \mathbb{N}^{\eta} \text { s.t. }|\mathbf{k}| \leq j \text { and } \sum_{\ell=1}^{\eta} \ell k_{\ell}=\alpha,\binom{j}{\mathbf{k}} \neq 0,
$$

where $\binom{j}{\mathbf{k}}=\binom{j}{k_{1}}\binom{j-k_{1}}{k_{2}}\binom{j-k_{1}-k_{2}}{k_{3}} \ldots\binom{j-k_{1}-k_{2}-\cdots-k_{\eta-1}}{k_{\eta}}$.

Theorem (Lucas theorem - 1978)

Let $a, b \in \mathbb{N}$ and p be a prime number. Write $a=\sum_{i \geq 0} a^{(i)} p^{i}$, the representation of a in base p. Then $\binom{a}{b}=\prod_{i \geq 0}\binom{a^{(i)}}{b^{(i)}} \bmod p$.

Order relation : $x \leq_{p} y \Leftrightarrow \forall i \in \mathbb{N}, x^{(i)} \leq y^{(i)}$. LT: $\binom{a}{b} \neq 0 \Leftrightarrow b \leq_{p} a$.
The monomial T^{α} appears as a term of a $\phi(T)^{j}$ iif there exists $\mathbf{k} \in \mathbb{N}^{\eta}$ such that $\alpha=\sum_{\ell=1}^{\eta} \ell k_{\ell}$ and

$$
\forall m \in[1, \eta], k_{m} \leq_{p} j-\sum_{\ell=1}^{m-1} k_{\ell} .
$$

Recall: $a^{(r)}$ is the $r^{t h}$ digit of the representation of a in base p.

Lemma

Fix $j \in \mathbb{N}$. For any $\mathbf{k} \in \mathbb{N}^{\eta}$ such that $\sum_{\ell=1}^{\eta} k_{\ell} \leq j$, the following assertions are equivalent.

- $\forall m \in[1, \eta], k_{m} \leq_{p} j-\sum_{\ell=1}^{m-1} k_{\ell}$,
- $\forall m \in[1, \eta], \forall r \in \mathbb{N}, \sum_{\ell=1}^{m} k_{\ell}^{(r)} \leq j^{(r)}$,
- $\forall r \in \mathbb{N}, \sum_{\ell=1}^{\eta} k_{\ell}^{(r)} \leq j^{(r)}$.

Two phenomena:
(1) Vanishing coefficients in characteristic p

Two phenomena:
(1) Vanishing coefficients in characteristic p

The monomials appearing in some $\phi(T)^{j}$ are those of the form $T^{\sum_{\ell=1}^{\eta} \ell k_{\ell}}$ for $\mathbf{k} \in \mathbb{N}^{\eta}$ such that

$$
\forall r \in \mathbb{N}, \sum_{\ell=1}^{\eta} k_{\ell}^{(r)} \leq j^{(r)}
$$

(2) $t^{q}=t$ for $t \in \mathbb{F}_{q}$

Two phenomena:
(1) Vanishing coefficients in characteristic p

The monomials appearing in some $\phi(T)^{j}$ are those of the form $T^{\sum_{\ell=1}^{\eta} \ell k_{\ell}}$ for $\mathbf{k} \in \mathbb{N}^{\eta}$ such that

$$
\forall r \in \mathbb{N}, \sum_{\ell=1}^{\eta} k_{\ell}^{(r)} \leq j^{(r)} .
$$

(2) $t^{q}=t$ for $t \in \mathbb{F}_{q} \Rightarrow$ Considering polynomials modulo $T^{q}-T$ For $a \in \mathbb{N}$, there exists a unique $r \in\{0, \ldots, q-1\}$ s.t. $t^{a}=t^{r}$ for every $t \in \mathbb{F}_{q}$, denoted by $\operatorname{Red}_{q}^{\star}(a)$.

$$
\left(q-1 \mid \operatorname{Red}_{q}^{\star}(a)-a\right) \text { and }\left(\operatorname{Red}_{q}^{\star}(a)=0 \Leftrightarrow a=0\right)
$$

In other words, $\operatorname{Red}_{q}^{\star}(a)$ is the remainder of a modulo $q-1$ unless a is a non-zero multiple of $q-1$. In this case, $\operatorname{Red}_{q}^{\star}(a)=q-1$.

Two phenomena:
(1) Vanishing coefficients in characteristic p

The monomials appearing in some $\phi(T)^{j}$ are those of the form $T^{\sum_{\ell=1}^{\eta} \ell k_{\ell}}$ for $\mathbf{k} \in \mathbb{N}^{\eta}$ such that

$$
\forall r \in \mathbb{N}, \sum_{\ell=1}^{\eta} k_{\ell}^{(r)} \leq j^{(r)} .
$$

(2) $t^{q}=t$ for $t \in \mathbb{F}_{q} \Rightarrow$ Considering polynomials modulo $T^{q}-T$ For $a \in \mathbb{N}$, there exists a unique $r \in\{0, \ldots, q-1\}$ s.t. $t^{a}=t^{r}$ for every $t \in \mathbb{F}_{q}$, denoted by $\operatorname{Red}_{q}^{\star}(a)$.

$$
\left(q-1 \mid \operatorname{Red}_{q}^{\star}(a)-a\right) \text { and }\left(\operatorname{Red}_{q}^{\star}(a)=0 \Leftrightarrow a=0\right)
$$

In other words, $\operatorname{Red}_{q}^{\star}(a)$ is the remainder of a modulo $q-1$ unless a is a non-zero multiple of $q-1$. In this case, $\operatorname{Red}_{q}^{\star}(a)=q-1$.
Fix $P(T)=\sum c_{m} T^{m}$.
$\operatorname{ev}_{\mathbb{F}_{q}}(P(T)) \in \operatorname{RS}_{q}(d)$ iif $\operatorname{Red}_{q}^{\star}(m) \leq d$ for every m s.t. $c_{m} \neq 0$.

Theorem [Lavauzelle, N-2019]

(1) The linear code $\operatorname{Lift}^{\eta}\left(\mathrm{RS}_{q}(d)\right)$ is spanned by monomials.
(2 A monomial $X^{i} Y^{j}$ belongs to $\operatorname{Lift}^{\eta}\left(\mathrm{RS}_{q}(d)\right)$ if and only if for every $\mathbf{k} \in \mathbb{N}^{\eta}$ such that for all $r \geq 0, \sum_{l=1}^{\eta} k_{l}^{(r)} \leq j^{(r)}$, we have

$$
\operatorname{Red}_{q}^{\star}\left(i+\sum_{l=1}^{\eta} l k_{l}\right) \leq d .
$$

Only interesting when $d<q-1$ since $\operatorname{RS}_{q}(q-1)$ is trivial.

Theorem [Lavauzelle, N-2019]

(1) The linear code $\operatorname{Lift}^{\eta}\left(\mathrm{RS}_{q}(d)\right)$ is spanned by monomials.
(2) A monomial $X^{i} Y^{j}$ belongs to $\operatorname{Lift}^{\eta}\left(\operatorname{RS}_{q}(d)\right)$ if and only if for every $\mathbf{k} \in \mathbb{N}^{\eta}$ such that for all $r \geq 0, \sum_{l=1}^{\eta} k_{l}^{(r)} \leq j^{(r)}$, we have

$$
\operatorname{Red}_{q}^{\star}\left(i+\sum_{l=1}^{\eta} l k_{l}\right) \leq d .
$$

Only interesting when $d<q-1$ since $\operatorname{RS}_{q}(q-1)$ is trivial.
Question: Is $\operatorname{Lift}^{\eta}\left(\operatorname{RS}_{q}(d)\right)$ really bigger than $\mathrm{WRM}_{q}^{\eta}(d)$?

Representation of the monomials $x^{i} y^{j}$ whose evaluation belongs to $\operatorname{Lift}^{\eta}\left(\operatorname{RS}_{q}(d)\right)$
Remark: i and j can be assumed $\leq q-1$.
Represent couples (i, j) in the square $\{0, \ldots, q-1\}^{2} \rightarrow$ Degree set

$\mathrm{WRM}_{16}^{2}(13)$
Total square are $=$ length $/$ Black area $=$ dimension

Representation of the monomials $x^{i} y^{j}$ whose evaluation belongs to $\operatorname{Lift}^{\eta}\left(\operatorname{RS}_{q}(d)\right)$
Remark: i and j can be assumed $\leq q-1$.
Represent couples (i, j) in the square $\{0, \ldots, q-1\}^{2} \rightarrow$ Degree set

Total square are $=$ length $/$ Black area $=$ dimension
How big can be our η-lifted codes?

Uselful property of the degree set of $\operatorname{Lift}^{\eta} \mathrm{RS}_{q}(q-\alpha)$

For a fixed $\alpha \geq 2$, the degree set of $\operatorname{Lift}^{\eta} \mathrm{RS}_{q}(q-\alpha)$ contains many copies of the degree set of $\mathrm{WRM}_{p^{\varepsilon}}^{\eta}\left(p^{\varepsilon}-\alpha-\eta\right)$, for $\varepsilon \leq e$.

Information rate of $\operatorname{Lift}^{\eta} \mathrm{RS}_{q}(q-\alpha)$ when $q \rightarrow \infty$ and α is fixed

Theorem [L,N - 2019]

Let $\alpha \geq 2, \eta \geq 1$ and p be a prime number.
For each $e \in \mathbb{N}$, set $\mathcal{C}_{e}=\operatorname{Lift}^{\eta} \operatorname{RS}_{p^{e}}\left(p^{e}-\alpha\right)$.
Then, the information rate R_{e} of \mathcal{C}_{e} approaches 1 when $e \rightarrow \infty$.

Theorem [L,N - 2019]

Let $c \geq 1, \eta \geq 1$ and p be a prime number. Fix $\gamma=1-p^{-c}$. For $e \geq c+1$, set $\mathcal{C}_{e}=\operatorname{Lift}^{\eta} \operatorname{RS}_{p^{e}}\left(\gamma p^{e}\right)$. Then, the information rate R_{e} of \mathcal{C}_{e} satisfies:

$$
\lim _{e \rightarrow \infty} R_{e} \geq \frac{1}{2 \eta} \sum_{\varepsilon=0}^{c-1}\left(p^{-\varepsilon}-p^{-c}\right)^{2} N_{\varepsilon}
$$

Degree set of $\operatorname{Lift}^{2} \mathrm{RS}_{2^{e}}\left(2^{e}-2^{e-c}\right)$ for $c=4$.
Number of differents shades of grey $=c$.

Thank you for your attention!

