Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Julien Lavauzelle, Jade Nardi

Institut de recherche mathématique de Rennes INRIA Saclay

17/10/2019

Partially funded by ANR Manta

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

PIR protocol

Lifting process

Asymtotically good families of codes

Weighted Projective Reed-Muller codes and η -lines

Fix $\eta \in \mathbb{N}^*.$ Consider the plane weighted Reed-Muller code of weight $(1,\eta):$

$$\operatorname{WRM}_{q}^{\eta}(d) \coloneqq \langle \operatorname{ev}_{\mathbb{A}(\mathbb{F}_{q})}(x^{i}y^{j}), (i,j) \in \mathbb{N}^{2} \mid i + \eta j \leq d \rangle \subset \mathbb{F}_{q}^{q^{2}}$$

Rk: WRM^{η}_{*q*}(*d*) = RM_{*q*}(2,*d*).

Can be seen as an AG code on $\mathbb{P}^{(1,1,\eta)}$ outside the line $(X_0 = 0)$:

$$\operatorname{WRM}_{q}^{\eta}(d) = \langle \widetilde{\operatorname{ev}}(X_{0}^{d-i-\eta j}X_{1}^{i}X_{2}^{j}), (i,j) \in \mathbb{N}^{2} \mid i+\eta j \leq d \rangle$$

Weighted Projective Reed-Muller codes and η -lines

Fix $\eta \in \mathbb{N}^*$. Consider the plane weighted Reed-Muller code of weight $(1, \eta)$:

 $\operatorname{WRM}_{q}^{\eta}(d) \coloneqq \langle \operatorname{ev}_{\mathbb{A}(\mathbb{F}_{q})}(x^{i}y^{j}), (i,j) \in \mathbb{N}^{2} \mid i + \eta j \leq d \rangle \subset \mathbb{F}_{q}^{q^{2}}$

Rk: WRM^{η}_{*q*}(*d*) = RM_{*q*}(2,*d*).

Can be seen as an AG code on $\mathbb{P}^{(1,1,\eta)}$ outside the line $(X_0 = 0)$:

$$\operatorname{WRM}_{q}^{\eta}(d) = \langle \operatorname{\widetilde{ev}}(X_{0}^{d-i-\eta j}X_{1}^{i}X_{2}^{j}), (i,j) \in \mathbb{N}^{2} \mid i + \eta j \leq d \rangle$$

Aim: Highlight some local decoding properties

Definition (η -line)

(Non-vertical) η -line :

- on $\mathbb{P}^{(1,1,\eta)}$: Set of zeroes of $P(X_0, X_1, X_2) = X_2 \Phi(X_0, X_1)$, where $\phi \in \mathbb{F}_q[X_0, X_1]_h$ and $\deg \phi = \eta$.
- on \mathbb{A}^2 : Set of zeroes of $P(x, y) = y \phi(x)$, where $\phi \in \mathbb{F}_q[X]$ and $\deg \phi \leq \eta$.

くぼう くちゃ くちゃ

Recalls:

- WRM^{η}_q(d) := $\langle ev(x^i y^j), (i, j) \in \mathbb{N}^2 \mid i + \eta j \le d \rangle$
- η -line: $y = \phi(x)$ with $\phi \in \mathbb{F}_q[X]$ and $\deg \phi \leq \eta$.

Parametrization of an η -line: $t \mapsto (t, \phi(t))$ Set of embeddings of η -lines into the affine plane \mathbb{A}^2 :

 $\Phi_{\eta} = \left\{ L_{\phi} : t \mapsto (t, \phi(t)) \mid \phi \in \mathbb{F}_{q}[T] \text{ and } \deg \phi \leq \eta \right\},$

Recalls:

- WRM_q^{η}(d) := $\langle ev(x^i y^j), (i, j) \in \mathbb{N}^2 | i + \eta j \le d \rangle$
- η -line: $y = \phi(x)$ with $\phi \in \mathbb{F}_q[X]$ and $\deg \phi \leq \eta$.

Parametrization of an η -line: $t \mapsto (t, \phi(t))$ Set of embeddings of η -lines into the affine plane \mathbb{A}^2 :

$$\Phi_{\eta} = \{L_{\phi} : t \mapsto (t, \phi(t)) \mid \phi \in \mathbb{F}_{q}[T] \text{ and } \deg \phi \leq \eta\},\$$

Lemma

Any polynomial $f \in \mathbb{F}_q[X, Y]$ with $\deg_{(1,\eta)} \leq d$ satisfies $\operatorname{ev}(f \circ L) \in \operatorname{RS}_q(d)$ for any $L \in \Phi_\eta$.

Check on monomials: set $f = X^i Y^j$ with $i + \eta j \le d$. $\forall \phi \in \Phi_{\eta}, (f \circ L_{\phi})(T) = T^i \phi(T)^j$ has degree less than d. PIR protocol ●000

PIR Protocol

Lifting process

Asymtotically good families of codes 0000

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

< ロ > < 回 > < 回 > < 回 > < 回 >

Asymtotically good families of codes 0000

How to retrieve a datum stored on servers without giving any information about it?

 \rightsquigarrow Aim of Private Information Retrieval protocols

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

4 A I

How to retrieve a datum stored on servers without giving any information about it?

 \sim Aim of Private Information Retrieval protocols [Augot,Levy-dit-Vehel,Shikfa (2014)] Share the database on several servers.

How to retrieve a datum stored on servers without giving any information about it?

→ Aim of Private Information Retrieval protocols [Augot,Levy-dit-Vehel,Shikfa (2014)] Share the database on several servers.

PIR protocol $column{c}{}^{\text{PIR protocol}}$

PIR protocol Lifting proc 0000 CONTROL CONTRO

Word of WRM^η_q(d) restricted along an η-line = codeword of RS_q(d)
 An η-line meets each line x = a at a unique point.

Wanted datum: c_{P_0} with $c \in WRM_q^{\eta}(d)$ and d < q - 2.

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

PIR protocol Lifting process $0 \bullet 00$ 00000000 PIR Protocol linked to WRM^a_d(d)

PIR protocol Lifting process $0 \bullet 00$ $0 \circ 000$ $0 \circ 00000000$ PIR Protocol linked to $WRM^{\eta}_{\sigma}(d)$

PIR protocol $0 \bullet 00$ PIR Protocol linked to $WRM_{\sigma}^{\eta}(d)$

Case $\eta = 1$ already known (PIR protocol from locally decodable codes) Because restricting a word of $\operatorname{RM}_q(2, d)$ along a line gives a word of $\operatorname{RS}_q(d)$.

Why take $\eta > 1$?

Case $\eta = 1$ already known (PIR protocol from locally decodable codes) Because restricting a word of $\operatorname{RM}_q(2, d)$ along a line gives a word of $\operatorname{RS}_q(d)$.

Why take $\eta > 1$? What if servers communicate...? η -line \Leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \leq \eta$. Case $\eta = 1$ already known (PIR protocol from locally decodable codes) Because restricting a word of $\operatorname{RM}_q(2, d)$ along a line gives a word of $\operatorname{RS}_q(d)$.

Why take $\eta > 1$? What if servers communicate...?

 η -line \leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \leq \eta$.

 η = 1 \Rightarrow the protocol does not resist to colluding servers!

 $\eta>1$ \Rightarrow the protocol resists to the collusion of η servers!

Case $\eta = 1$ already known (PIR protocol from locally decodable codes) Because restricting a word of $RM_q(2, d)$ along a line gives a word of $RS_q(d)$.

Why take $\eta > 1$? What if servers communicate...?

 η -line \leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \leq \eta$.

 η = 1 \Rightarrow the protocol does not resist to colluding servers!

 $\eta>1$ \Rightarrow the protocol resists to the collusion of η servers!

... Counterpart...

Case $\eta = 1$ already known (PIR protocol from locally decodable codes) Because restricting a word of $RM_q(2, d)$ along a line gives a word of $RS_q(d)$.

Why take $\eta > 1$? What if servers communicate...? η -line \leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \leq \eta$. $\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers! $\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

... Counterpart... For d < q - 1,

$$\dim \operatorname{WRM}_q^{\eta}(d) \approx \frac{d^2}{2\eta}$$

decreases as η grows \Rightarrow Loss of storage when η grows.

PIR protocol		
0000	0000000	0000
Can we enhance the dimension while keeping the resistance to collusions?		

Only property useful to the PIR protocol: Restricting words along η -lines gives RS(d) codewords. Only property useful to the PIR protocol: Restricting words along η -lines gives RS(d) codewords.

→ *Lifting process* introduced by Guo,Kopparty,Sudan (2013)

Definition (η -lifting of a Reed-Solomon code)

Let q be a prime power. The η -lifting of the Reed-Solomon code $RS_q(d)$ is the code of length $n = q^2$ defined as follows:

 $\operatorname{Lift}^{\eta}(\operatorname{RS}_{q}(d)) = \left\{ \operatorname{ev}_{\mathbb{F}_{q}^{2}}(f) \mid f \in \mathbb{F}_{q}[X,Y], \forall L \in \Phi_{\eta}, \operatorname{ev}_{\mathbb{F}_{q}}(f \circ L) \in \operatorname{RS}_{q}(d) \right\}.$

Recall: $\Phi_{\eta} = \{L_{\phi} : t \mapsto (t, \phi(t)) \mid \phi \in \mathbb{F}_{q}[T] \text{ and } \deg \phi \leq \eta\}.$

```
Of course, \operatorname{WRM}_q^{\eta}(d) \subset \operatorname{Lift}^{\eta} \operatorname{RS}_q(d).
Question: \operatorname{WRM}_q^{\eta}(d) \not\subseteq \operatorname{Lift}^{\eta} \operatorname{RS}_q(d) ?
```

 $(\operatorname{Its}_q(a) \neq \operatorname{Int}(\operatorname{Its}_q(a))$

Let
$$q = 4$$
, $\eta = 2$ and $d = 2$. WRM $_q^{\eta}(d, (1) = \langle ev(X^i Y^j) \rangle$ with
 $(i, j) \in \{(0, 0), (0, 1), (1, 0), (2, 0)\}.$

Take $f(X,Y) = Y^2 \in \mathbb{F}_4[X,Y] \setminus WRM_4^2(2)$. η -line: $L(T) = (T, aT^2 + bT + c) \in \Phi_2$, with $a, b, c \in \mathbb{F}_4$. For every $t \in \mathbb{F}_4$,

$$(f \circ L)(t) = (at^{2} + bt + c)^{2} = a^{2}t^{4} + b^{2}t^{2} + c^{2} = b^{2}t^{2} + a^{2}t + c$$

 $\Rightarrow \operatorname{ev}_{\mathbb{F}_4}(f \circ L) \in \operatorname{RS}_4(2) \text{ for every } L \in \Phi_2.$

Example of $\operatorname{WRM}_q^{\eta}(d) \not\subseteq \operatorname{Lift}^{\eta}(\operatorname{RS}_q(d))$

Let
$$q = 4$$
, $\eta = 2$ and $d = 2$. $\operatorname{WRM}_q^{\eta}(d, (1) = \langle \operatorname{ev}(X^i Y^j) \rangle$ with

Lifting process

$$(i,j) \in \{(0,0), (0,1), (1,0), (2,0)\}.$$

Take $f(X,Y) = Y^2 \in \mathbb{F}_4[X,Y] \setminus WRM_4^2(2)$. η -line: $L(T) = (T, aT^2 + bT + c) \in \Phi_2$, with $a, b, c \in \mathbb{F}_4$. For every $t \in \mathbb{F}_4$,

$$(f \circ L)(t) = (at^2 + bt + c)^2 \stackrel{\bullet}{=} a^2 t^4 + b^2 t^2 + c^2 \stackrel{\bullet}{=} b^2 t^2 + a^2 t + c.$$

$$\Rightarrow \operatorname{ev}_{\mathbb{F}_4}(f \circ L) \in \operatorname{RS}_4(2) \text{ for every } L \in \Phi_2.$$

$$\operatorname{WRM}_4^2(2) \not\subseteq \operatorname{Lift}^2(\operatorname{RS}_4(2)).$$

Two phenomena:

_

• Vanishing coefficients in characteristic p,

2
$$t^q = t$$
 for $t \in \mathbb{F}_q$.

Vanishing coefficients in characteristic p.
 In the previous example, on 𝔽₄,

$$(aT^{2} + bT + c)^{2} = a^{2}T^{4} + b^{2}T^{2} + c^{2}$$

 \Rightarrow No monomials of odd power.

Vanishing coefficients in characteristic p.
 In the previous example, on 𝔽₄,

$$(aT^{2} + bT + c)^{2} = a^{2}T^{4} + b^{2}T^{2} + c^{2}$$

 \Rightarrow No monomials of odd power.

Strategy:

Determining the monomials $X^i Y^j$ s.t. $ev(T^i \phi(T)^j) \in RS_q(d)$.

1st step:

Which monomials appear in $\phi(T)^j$ when $\deg(\phi) \leq \eta$ for a fixed j?

Fix $\phi(T) = \sum_{m=0}^{\eta} a_m T^m \in \mathbb{F}_q[T]$. The multinomial theorem gives

$$\phi(T)^{j} = \sum_{k_{1}+\dots+k_{\eta} \leq j} \qquad \underbrace{\binom{j}{\mathbf{k}}} \qquad \lambda_{\mathbf{k}} T^{k_{1}+2k_{2}+\dots+\eta k_{\eta}},$$

multinomial coeff.

where $\lambda_{\mathbf{k}}$ only depends on a_0, \ldots, a_η and \mathbf{k} .

◆ 同 ▶ → 三 ▶

Fix $\phi(T) = \sum_{m=0}^{\eta} a_m T^m \in \mathbb{F}_q[T]$. The multinomial theorem gives

$$\phi(T)^{j} = \sum_{k_{1}+\dots+k_{\eta} \leq j} \qquad \underbrace{\binom{j}{\mathbf{k}}} \qquad \lambda_{\mathbf{k}} T^{k_{1}+2k_{2}+\dots+\eta k_{\eta}},$$

multinomial coeff.

where $\lambda_{\mathbf{k}}$ only depends on a_0, \ldots, a_η and \mathbf{k} .

$$\phi(T)^j = \sum_{\alpha \in \mathbb{N}} c_{\alpha} T^{\alpha}$$
, with $c_{\alpha} = \sum_{\mathbf{k} \in K_{\alpha}} {j \choose \mathbf{k}} \lambda_{\mathbf{k}}$

where

$$K_{\alpha} = \{ \mathbf{k} \in \mathbb{N}^{\eta} \mid \sum_{\ell=1}^{\eta} k_{\ell} \leq j \text{ and } \sum_{\ell=1}^{\eta} \ell k_{\ell} = \alpha \}.$$

Claim: $c_{\alpha} = 0$ for every $\phi \in \Phi_{\eta}$ iif $\binom{j}{\mathbf{k}} = 0$ for every $\mathbf{k} \in K_{\alpha}$.

The monomial T^{α} appears as a term of $\phi(T)^{j}$ iif there exists $\mathbf{k} \in K_{\alpha}$ s.t. $\binom{j}{\mathbf{k}} \neq 0$.

Recall: The monomial T^{α} appears in some $\phi(T)^{j}$ iif

Lifting process

$$\exists \mathbf{k} \in \mathbb{N}^{\eta} \text{ s.t. } |\mathbf{k}| \leq j \text{ and } \sum_{\ell=1}^{\eta} \ell k_{\ell} = \alpha, \begin{pmatrix} j \\ \mathbf{k} \end{pmatrix} \neq 0,$$

where $\binom{j}{\mathbf{k}} = \binom{j}{k_1} \binom{j-k_1}{k_2} \binom{j-k_1-k_2}{k_3} \cdots \binom{j-k_1-k_2-\cdots-k_{\eta-1}}{k_{\eta}}.$

Image: A matched block of the second seco

Recall: The monomial T^{α} appears in some $\phi(T)^{j}$ iif

Lifting process

$$\exists \mathbf{k} \in \mathbb{N}^{\eta} \text{ s.t. } |\mathbf{k}| \leq j \text{ and } \sum_{\ell=1}^{\eta} \ell k_{\ell} = \alpha, \begin{pmatrix} j \\ \mathbf{k} \end{pmatrix} \neq 0,$$

where $\binom{j}{\mathbf{k}} = \binom{j}{k_1} \binom{j-k_1}{k_2} \binom{j-k_1-k_2}{k_3} \cdots \binom{j-k_1-k_2-\cdots-k_{\eta-1}}{k_{\eta}}.$

Theorem (Lucas theorem - 1978)

Let $a, b \in \mathbb{N}$ and p be a prime number. Write $a = \sum_{i \ge 0} a^{(i)} p^i$, the representation of a in base p. Then $\binom{a}{b} = \prod_{i \ge 0} \binom{a^{(i)}}{b^{(i)}} \mod p$.

 $\text{Order relation}: \ x \leq_p y \iff \forall \ i \in \mathbb{N}, \ x^{(i)} \leq y^{(i)}. \ \mathsf{LT}: \left(\begin{smallmatrix}a\\b\end{smallmatrix}\right) \neq 0 \iff b \leq_p a.$

The monomial T^{α} appears as a term of a $\phi(T)^{j}$ iif there exists $\mathbf{k} \in \mathbb{N}^{\eta}$ such that $\alpha = \sum_{\ell=1}^{\eta} \ell k_{\ell}$ and

$$\forall m \in [1,\eta], k_m \leq_p j - \sum_{\ell=1}^{m-1} k_\ell.$$

Recall: $a^{(r)}$ is the r^{th} digit of the representation of a in base p.

Lemma

Fix $j \in \mathbb{N}$. For any $\mathbf{k} \in \mathbb{N}^{\eta}$ such that $\sum_{\ell=1}^{\eta} k_{\ell} \leq j$, the following assertions are equivalent.

•
$$\forall m \in [1,\eta], k_m \leq_p j - \sum_{\ell=1}^{m-1} k_\ell,$$

• $\forall m \in [1,\eta], \forall r \in \mathbb{N}, \sum_{\ell=1}^m k_\ell^{(r)} \leq j^{(r)},$
• $\forall r \in \mathbb{N}, \sum_{\ell=1}^\eta k_\ell^{(r)} \leq j^{(r)}.$

< A → < E

• Vanishing coefficients in characteristic *p*

The monomials appearing in some $\phi(T)^j$ are those of the form $T^{\Sigma_{\ell=1}^\eta\ell k_\ell}$ for $\mathbf{k}\in\mathbb{N}^\eta$ such that

$$\forall r \in \mathbb{N}, \sum_{\ell=1}^{\eta} k_{\ell}^{(r)} \leq j^{(r)}.$$

2 $t^q = t$ for $t \in \mathbb{F}_q$

• Vanishing coefficients in characteristic *p*

The monomials appearing in some $\phi(T)^j$ are those of the form $T^{\Sigma_{\ell=1}^\eta\ell k_\ell}$ for $\mathbf{k}\in\mathbb{N}^\eta$ such that

$$\forall r \in \mathbb{N}, \sum_{\ell=1}^{\eta} k_{\ell}^{(r)} \leq j^{(r)}.$$

2 $t^q = t$ for $t \in \mathbb{F}_q \Rightarrow$ Considering polynomials modulo $T^q - T$ For $a \in \mathbb{N}$, there exists a unique $r \in \{0, \ldots, q-1\}$ s.t. $t^a = t^r$ for every $t \in \mathbb{F}_q$, denoted by $\operatorname{Red}_q^*(a)$.

$$(q-1 | \operatorname{Red}_q^*(a) - a)$$
 and $(\operatorname{Red}_q^*(a) = 0 \Leftrightarrow a = 0)$

In other words, $\operatorname{Red}_q^*(a)$ is the remainder of a modulo q-1 unless a is a non-zero multiple of q-1. In this case, $\operatorname{Red}_q^*(a) = q-1$.

• Vanishing coefficients in characteristic *p*

The monomials appearing in some $\phi(T)^j$ are those of the form $T^{\Sigma_{\ell=1}^\eta \ell k_\ell}$ for $\mathbf{k} \in \mathbb{N}^\eta$ such that

$$\forall r \in \mathbb{N}, \sum_{\ell=1}^{\eta} k_{\ell}^{(r)} \leq j^{(r)}.$$

2 $t^q = t$ for $t \in \mathbb{F}_q \Rightarrow$ Considering polynomials modulo $T^q - T$ For $a \in \mathbb{N}$, there exists a unique $r \in \{0, \dots, q-1\}$ s.t. $t^a = t^r$ for every $t \in \mathbb{F}_q$, denoted by $\operatorname{Red}_a^r(a)$.

$$(q-1 | \operatorname{Red}_q^*(a) - a)$$
 and $(\operatorname{Red}_q^*(a) = 0 \Leftrightarrow a = 0)$

In other words, $\operatorname{Red}_q^*(a)$ is the remainder of a modulo q-1 unless a is a non-zero multiple of q-1. In this case, $\operatorname{Red}_q^*(a) = q-1$. Fix $P(T) = \sum c_m T^m$. $\operatorname{ev}_{\mathbb{F}_q}(P(T)) \in \operatorname{RS}_q(d)$ iif $\operatorname{Red}_q^*(m) \leq d$ for every m s.t. $c_m \neq 0$.

Theorem [Lavauzelle, N - 2019]

- The linear code $\operatorname{Lift}^{\eta}(\operatorname{RS}_q(d))$ is spanned by monomials.
- **②** A monomial XⁱY^j belongs to Lift^η(RS_q(d)) if and only if for every **k** ∈ N^η such that for all r ≥ 0, $\sum_{l=1}^{\eta} k_l^{(r)} ≤ j^{(r)}$, we have

$$\operatorname{Red}_{q}^{\star}\left(i+\sum_{l=1}^{\eta}lk_{l}\right)\leq d.$$

Only interesting when d < q - 1 since $RS_q(q - 1)$ is trivial.

Theorem [Lavauzelle, N - 2019]

- The linear code $\operatorname{Lift}^{\eta}(\operatorname{RS}_q(d))$ is spanned by monomials.
- **②** A monomial XⁱY^j belongs to Lift^η(RS_q(d)) if and only if for every **k** ∈ N^η such that for all r ≥ 0, $\sum_{l=1}^{\eta} k_l^{(r)} ≤ j^{(r)}$, we have

$$\operatorname{Red}_q^\star\left(i+\sum_{l=1}^\eta lk_l\right)\leq d.$$

Only interesting when d < q - 1 since $RS_q(q - 1)$ is trivial.

Question: Is $\operatorname{Lift}^{\eta}(\mathrm{RS}_q(d))$ really bigger than $\operatorname{WRM}_q^{\eta}(d)$?

 PIR protocol
 Lifting process
 Asymptotically good families of codes

 0000
 00000000
 0000

Representation of the monomials $x^i y^j$ whose evaluation belongs to $\text{Lift}^{\eta}(\text{RS}_q(d))$

Remark: *i* and *j* can be assumed $\leq q - 1$.

Represent couples (i, j) in the square $\{0, \dots, q-1\}^2 \rightarrow$ **Degree set**

Total square are = length / Black area = dimension

 PIR protocol
 Lifting process
 Asymptotically good families of codes

 0000
 00000000
 0000

Representation of the monomials $x^i y^j$ whose evaluation belongs to $\text{Lift}^{\eta}(\text{RS}_q(d))$

Remark: *i* and *j* can be assumed $\leq q - 1$.

Represent couples (i, j) in the square $\{0, \ldots, q-1\}^2 \rightarrow$ **Degree set**

Total square are = length / Black area = dimension

How big can be our η -lifted codes ?

 PIR protocol
 Lifting process
 Asymtotically good families of codes

 0000
 0000000
 0000

Uselful property of the degree set of $\operatorname{Lift}^{\eta} \operatorname{RS}_q(q-\alpha)$

For a fixed $\alpha \ge 2$, the degree set of $\operatorname{Lift}^{\eta} \operatorname{RS}_q(q-\alpha)$ contains many copies of the degree set of $\operatorname{WRM}_{p^{\varepsilon}}^{\eta}(p^{\varepsilon}-\alpha-\eta)$, for $\varepsilon \le e$.

PIR protocol

Lifting process

Asymtotically good families of codes

Information rate of $\operatorname{Lift}^{\eta} \operatorname{RS}_{q}(q-\alpha)$ when $q \to \infty$ and α is fixed

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

Asymtotically good families of codes 0000

Information rate of $\operatorname{Lift}^{\eta} \operatorname{RS}_{q}(q-\alpha)$ when $q \to \infty$ and α is fixed

$\operatorname{Lift}^2(\operatorname{RS}(2^e-3) \text{ on } \mathbb{F}_{2^e})$

Theorem [L,N - 2019]

Let $\alpha \ge 2$, $\eta \ge 1$ and p be a prime number. For each $e \in \mathbb{N}$, set $\mathcal{C}_e = \operatorname{Lift}^{\eta} \operatorname{RS}_{p^e}(p^e - \alpha)$. Then, the information rate R_e of C_e approaches 1 when $e \to \infty$.

Theorem [L,N - 2019]

Let $c \ge 1$, $\eta \ge 1$ and p be a prime number. Fix $\gamma = 1 - p^{-c}$. For $e \ge c + 1$, set $C_e = \text{Lift}^{\eta} \operatorname{RS}_{p^e}(\gamma p^e)$. Then, the information rate R_e of C_e satisfies:

$$\lim_{e \to \infty} R_e \ge \frac{1}{2\eta} \sum_{\varepsilon=0}^{c-1} (p^{-\varepsilon} - p^{-c})^2 N_{\varepsilon} \,.$$

Degree set of $\operatorname{Lift}^2 \operatorname{RS}_{2^e}(2^e - 2^{e-c})$ for c = 4. Number of differents shades of grey = c.

150

e = 7

e = 5

Weighted Reed-Muller codes: local decoding properties, applications to Private Information Retrieval and lift

e = 6

100

e = 8

Thank you for your attention!

Image: A matched block of the second seco