Error-correcting codes on weighted projective planes and applications to Private Information Retrieval

Julien Lavauzelle. Jade Nardi

Institut de recherche mathématique de Rennes Institut de Mathématiques de Toulouse

14/06/2019

Partially funded by ANR Manta

Weighted Projective Reed-Muller codes and η -lines

Fix $\eta \in \mathbb{N}^*$. Consider the weighted Reed-Muller code of weight $(1, \eta)$:

$$\operatorname{WRM}_q^{\eta}(d) \coloneqq \langle \operatorname{ev}(x^i y^j), \ (i,j) \in \mathbb{N}^2 \mid i + \eta j \leq d \rangle \subset \mathbb{F}_q^{q^2}$$

Can be seen as an AG code on $\mathbb{P}^{(1,1,\eta)}$ outside the line $(X_0 = 0)$

Fix $\eta \in \mathbb{N}^*$. Consider the weighted Reed-Muller code of weight $(1, \eta)$:

$$\operatorname{WRM}_q^{\eta}(d) \coloneqq \left\langle \operatorname{ev}(x^i y^j), \; (i,j) \in \mathbb{N}^2 \; \middle| \; i + \eta j \leq d \right\rangle \subset \mathbb{F}_q^{q^2}$$

Can be seen as an AG code on $\mathbb{P}^{(1,1,\eta)}$ outside the line $(X_0 = 0)$

Definition (η -line)

(Non-vertical) η -line :

- on $\mathbb{P}^{(1,1,\eta)}$: Set of zeroes of $P(X_0,X_1,X_2)=X_2-\Phi(X_0,X_1)$, where $\phi\in\mathbb{F}_q[X_0,X_1]_h$ and $\deg\phi=\eta$.
- on \mathbb{A}^2 : Set of zeroes of $P(x,y) = y \phi(x)$, where $\phi \in \mathbb{F}_q[X]$ and $\deg \phi \leq \eta$.

Recalls:

- WRM_q^{η}(d) := $\langle \text{ev}(x^i y^j), (i,j) \in \mathbb{N}^2 \mid i + \eta j \leq d \rangle$
- η -line: $y = \phi(x)$ with $\phi \in \mathbb{F}_q[X]$ and $\deg \phi \leq \eta$.

Parametrization of an η -line: $t \mapsto (t, \phi(t))$ Set of embeddings of η -lines into the affine plane \mathbb{A}^2 :

$$\Phi_{\eta} = \{ L_{\phi} : t \mapsto (t, \phi(t)) \mid \phi \in \mathbb{F}_{q}[T] \text{ and } \deg \phi \leq \eta \},$$

Recalls:

- WRM_q^{η}(d) := $\langle \text{ev}(x^i y^j), (i, j) \in \mathbb{N}^2 \mid i + \eta j \leq d \rangle$
- η -line: $y = \phi(x)$ with $\phi \in \mathbb{F}_q[X]$ and $\deg \phi \leq \eta$.

Parametrization of an η -line: $t \mapsto (t, \phi(t))$ Set of embeddings of η -lines into the affine plane \mathbb{A}^2 :

$$\Phi_{\eta} = \{ L_{\phi} : t \mapsto (t, \phi(t)) \mid \phi \in \mathbb{F}_{q}[T] \text{ and } \deg \phi \leq \eta \},$$

Lemma

Any polynomial $f \in \mathbb{F}_q[X,Y]$ with $\deg_{(1,\eta)} \leq d$ satisfies $\operatorname{ev}(f \circ L) \in \operatorname{RS}_q(d)$ for any $L \in \Phi_\eta$.

Check on monomials: set $f = X^i Y^j$ with $i + \eta j \le d$. $\forall \phi \in \Phi_{\eta}$, $(f \circ L_{\phi})(T) = T^i \phi(T)^j$ has degree less than d.

PIR protocol

How to retrieve a datum stored on servers without giving any information about it?

→ Aim of Private Information Retrieval protocols

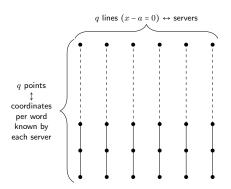
How to retrieve a datum stored on servers without giving any information about it?

→ Aim of Private Information Retrieval protocols [Augot,Levy-dit-Vehel,Shikfa (2014)] Share the database on several servers.

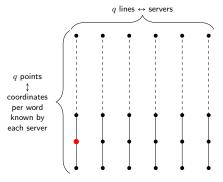
How to retrieve a datum stored on servers without giving any information about it?

$$\mathbb{A}^{2}(\mathbb{F}_{q}) = \bigsqcup_{i=1}^{q} L_{i}(\mathbb{F}_{q})$$
 (lines of the ruling)

Database: Codewords of $\operatorname{WRM}_q(d,(1,\eta))$ shared by **q servers**.

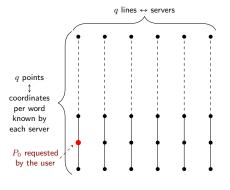


- **1** Word of $\operatorname{WRM}_q^{\eta}(d)$ restricted along an η -line = codeword of $\operatorname{RS}_q(d)$
- **2** An η -line meets each line x = a at a unique point.



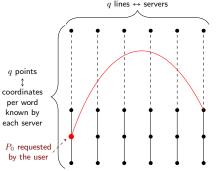
PIR Protocol linked to $WRM_q^{\eta}(d)$

- **1** Word of WRM $_q^{\eta}(d)$ restricted along an η -line = codeword of RS $_q(d)$
- **2** An η -line meets each line x = a at a unique point.



Wanted datum: c_{P_0} with $c \in WRM_q^{\eta}(d)$ and d < q - 2.

- **1** Word of $\operatorname{WRM}_q^{\eta}(d)$ restricted along an η -line = codeword of $\operatorname{RS}_q(d)$
- **2** An η -line meets each line x = a at a unique point.

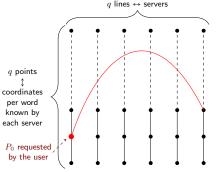


Wanted datum: c_{P_0} with $c \in WRM_q^{\eta}(d)$ and d < q - 2.

Randomly pick an η -line L containing P_0 .

PIR Protocol linked to $WRM_q^{\eta}(d)$

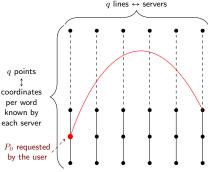
- $lackbox{0}$ Word of $\operatorname{WRM}_q^\eta(d)$ restricted along an η -line = codeword of $\operatorname{RS}_q(d)$
- **2** An η -line meets each line x = a at a unique point.



Wanted datum: c_{P_0} with $c \in WRM_q^{\eta}(d)$ and d < q - 2.

Randomly pick an η -line L containing P_0 . Server \leftrightarrow line not containing P_0 : ask for $c_{L_i \cap L}$

- **1** Word of WRM $_q^{\eta}(d)$ restricted along an η -line = codeword of RS $_q(d)$
- **2** An η -line meets each line x = a at a unique point.



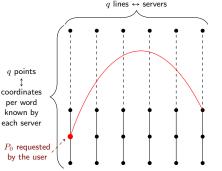
Wanted datum: c_{P_0} with $c \in WRM_q^{\eta}(d)$ and d < q - 2.

Randomly pick an η -line L containing P_0 .

Server \leftrightarrow line not containing P_0 : ask for $c_{L_i \cap L}$

Server \leftrightarrow line containing P_0 : ask for c_{P_1} for P_1 random on this line

- lacktriangledown Word of $\operatorname{WRM}_q^\eta(d)$ restricted along an η -line = codeword of $\operatorname{RS}_q(d)$
- **2** An η -line meets each line x = a at a unique point.



Wanted datum: c_{P_0} with $c \in WRM_q^{\eta}(d)$ and d < q - 2.

Randomly pick an η -line L containing P_0 .

Server \leftrightarrow line not containing P_0 : ask for $c_{L_i \cap L}$

Server \leftrightarrow line containing P_0 : ask for c_{P_1} for P_1 random on this line

 \Rightarrow Word of RS(d) with 1 error = easily correctable!

What's new?

Case η = 1 already known (PIR protocol from locally decodable codes)

Why take $\eta > 1$?

Case η = 1 already known (PIR protocol from locally decodable codes)

Why take $\eta > 1$? What if servers communicate...? η -line \leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \leq \eta$.

Case η = 1 already known (PIR protocol from locally decodable codes)

Why take $\eta > 1$? What if servers communicate...?

 η -line \leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \le \eta$.

 η = 1 \Rightarrow the protocol does not resist to colluding servers!

 $\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

Why take $\eta > 1$? What if servers communicate...? η -line \leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \leq \eta$. $\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers! $\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

... Counterpart...

Why take $\eta > 1$? What if servers communicate...?

 η -line \Leftrightarrow Polynomial $\phi \in \mathbb{F}_q[X]$ with $\deg(\phi) \le \eta$.

 η = 1 \Rightarrow the protocol does not resist to colluding servers!

 $\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

... Counterpart... For d < q - 1,

$$\dim \mathrm{WRM}_q^{\eta}(d) \approx \frac{d^2}{2\eta}$$

decreases as η grows \Rightarrow Loss of storage when η grows.

Can we enhance the dimension while keeping the resistance to collusions?

Only property useful to the PIR protocol: Restricting words along η -lines gives RS(d) codewords.

Can we enhance the dimension while keeping the resistance to collusions?

Only property useful to the PIR protocol: Restricting words along η -lines gives RS(d) codewords.

→ Lifting process introduced by Guo, Kopparty, Sudan (2013)

Definition (η -lifting of a Reed-Solomon code)

Let q be a prime power. The η -lifting of the Reed-Solomon code $\mathrm{RS}_q(d)$ is the code of length n = q^2 defined as follows:

$$\operatorname{Lift}^{\eta}(\operatorname{RS}_q(d)) = \left\{ \operatorname{ev}_{\mathbb{F}_q^2}(f) \mid f \in \mathbb{F}_q[X,Y], \forall L \in \Phi_{\eta}, \operatorname{ev}_{\mathbb{F}_q}(f \circ L) \in \operatorname{RS}_q(d) \right\}.$$

Recall:
$$\Phi_{\eta} = \{L_{\phi} : t \mapsto (t, \phi(t)) \mid \phi \in \mathbb{F}_q[T] \text{ and } \deg \phi \leq \eta\}.$$

Of course, $\operatorname{WRM}_q^{\eta}(d) \subset \operatorname{Lift}^{\eta} \operatorname{RS}_q(d)$. Question: $\operatorname{WRM}_q^{\eta}(d) \not\subseteq \operatorname{Lift}^{\eta} \operatorname{RS}_q(d)$?

Let
$$q = 4$$
, $\eta = 2$ and $d = 2$. WRM $_q^{\eta}(d, (1) = \langle \text{ev}(X^i Y^j) \rangle$ with $(i, j) \in \{(0, 0), (0, 1), (1, 0), (2, 0)\}$.

Take $f(X,Y) = Y^2 \in \mathbb{F}_4[X,Y] \setminus \mathrm{WRM}_4^2(2)$. η -line: $L(T) = (T, aT^2 + bT + c) \in \Phi_2$, with $a,b,c \in \mathbb{F}_4$. For every $t \in \mathbb{F}_4$,

$$(f \circ L)(t) = (at^2 + bt + c)^2 = a^2t^4 + b^2t^2 + c^2 = b^2t^2 + a^2t + c.$$

$$\Rightarrow \text{ev}_{\mathbb{F}_a}(f \circ L) \in \text{RS}_4(2) \text{ for every } L \in \Phi_2.$$

Let
$$q = 4$$
, $\eta = 2$ and $d = 2$. WRM $_q^{\eta}(d, (1) = \langle \text{ev}(X^i Y^j) \rangle$ with $(i, j) \in \{(0, 0), (0, 1), (1, 0), (2, 0)\}$.

Take $f(X,Y) = Y^2 \in \mathbb{F}_4[X,Y] \setminus \text{WRM}_4^2(2)$. η -line: $L(T) = (T,aT^2 + bT + c) \in \Phi_2$, with $a,b,c \in \mathbb{F}_4$. For every $t \in \mathbb{F}_4$,

$$(f \circ L)(t) = (at^2 + bt + c)^2 \stackrel{\bullet}{=} a^2 t^4 + b^2 t^2 + c^2 \stackrel{\bullet}{=} b^2 t^2 + a^2 t + c.$$

$$\Rightarrow \text{ev}_{\mathbb{F}_4}(f \circ L) \in \text{RS}_4(2) \text{ for every } L \in \Phi_2.$$

$$WRM_4^2(2) \subseteq Lift^2(RS_4(2))$$
.

Two phenomena:

- Vanishing coefficients in characteristic p,
- \bullet $t^q = t$ for $t \in \mathbb{F}_q$.

Two phenomena:

 \bullet Vanishing coefficients in characteristic p

2
$$t^q = t$$
 for $t \in \mathbb{F}_q$

Two phenomena:

 \bullet Vanishing coefficients in characteristic p

Theorem (Lucas theorem - 1978)

Let $a, b \in \mathbb{N}$ and p be a prime number. Write $a = \sum_{i \geq 0} a^{(i)} p^i$, the representation of a in base p. Then

$$\binom{a}{b} = \prod_{i \ge 0} \binom{a^{(i)}}{b^{(i)}} \mod p.$$

2
$$t^q = t$$
 for $t \in \mathbb{F}_q$

Two phenomena:

 $oldsymbol{0}$ Vanishing coefficients in characteristic p

Theorem (Lucas theorem - 1978)

Let $a,b \in \mathbb{N}$ and p be a prime number. Write $a = \sum_{i \geq 0} a^{(i)} p^i$, the representation of a in base p. Then

$$\binom{a}{b} = \prod_{i \ge 0} \binom{a^{(i)}}{b^{(i)}} \mod p.$$

② $t^q = t$ for $t \in \mathbb{F}_q$ For $a \in \mathbb{N}$, there exists a unique $r \in \{0, \dots, q-1\}$ s.t. $t^a = t^r$ for every $t \in \mathbb{F}_q$, denoted by $\operatorname{Red}_q^{\star}(a)$.

$$(q-1 \mid \operatorname{Red}_q^{\star}(a) - a)$$
 and $(\operatorname{Red}_q^{\star}(a) = 0 \iff a = 0)$

Theorem [Lavauzelle, N - 2019]

- **1** The linear code $\operatorname{Lift}^{\eta}(\mathrm{RS}_q(d))$ is spanned by monomials.
- **2** A monomial X^iY^j belongs to $\operatorname{Lift}^{\eta}(\operatorname{RS}_q(d))$ if and only if for every $\mathbf{k} \in \mathbb{N}^{\eta}$ such that for all $r \geq 0$, $\sum_{l=1}^{\eta} k_l^{(r)} \leq j^{(r)}$, we have

$$\operatorname{Red}_q^{\star}\left(i+\sum_{l=1}^{\eta}lk_l\right) \leq d.$$

Only interesting when d < q - 1 since $RS_q(q - 1)$ is trivial.

Theorem [Lavauzelle, N - 2019]

- **1** The linear code $\operatorname{Lift}^{\eta}(\mathrm{RS}_q(d))$ is spanned by monomials.
- **2** A monomial X^iY^j belongs to $\operatorname{Lift}^{\eta}(\operatorname{RS}_q(d))$ if and only if for every $\mathbf{k} \in \mathbb{N}^{\eta}$ such that for all $r \geq 0$, $\sum_{l=1}^{\eta} k_l^{(r)} \leq j^{(r)}$, we have

$$\operatorname{Red}_q^{\star}\left(i + \sum_{l=1}^{\eta} lk_l\right) \le d.$$

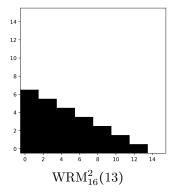
Only interesting when d < q - 1 since $RS_q(q - 1)$ is trivial.

Question: Is Lift $^{\eta}(\mathrm{RS}_q(d))$ really bigger than $\mathrm{WRM}_q^{\eta}(d)$?

Representation of the monomials x^iy^j whose evaluation belongs to $\mathrm{Lift}^\eta(\mathrm{RS}_q(d))$

Remark: i and j can be assumed $\leq q - 1$.

Represent couples (i, j) in the square $\{0, \dots, q-1\}^2 \to \mathbf{Degree}$ set

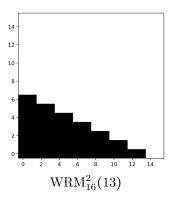


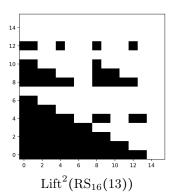
Total square are = length / Black area = dimension

Representation of the monomials $x^i y^j$ whose evaluation belongs to Lift ${}^{\eta}(RS_q(d))$

Remark: i and j can be assumed $\leq q-1$.

Represent couples (i, j) in the square $\{0, \dots, q-1\}^2 \to \mathbf{Degree}$ set



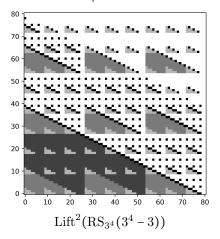


Total square are = length / Black area = dimension

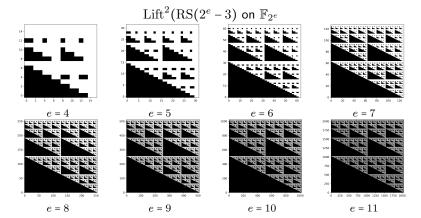
How big can be our η -lifted codes ?

Uselful property of the degree set of Lift ${}^{\eta} RS_q(q-\alpha)$

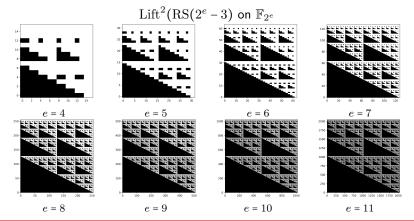
For a fixed $\alpha \geq 2$, the degree set of $\operatorname{Lift}^{\eta} \operatorname{RS}_q(q-\alpha)$ contains many copies of the degree set of $\operatorname{WRM}_{p^{\varepsilon}}^{\eta}(p^{\varepsilon}-\alpha-\eta)$, for $\varepsilon \leq e$.



Information rate of $\operatorname{Lift}^{\eta} \operatorname{RS}_q(\alpha)$ when $q \to \infty$ and α is fixed



Information rate of Lift ${}^{\eta} RS_q(\alpha)$ when $q \to \infty$ and α is fixed



Theorem [L,N - 2019]

Let $\alpha \geq 2$, $\eta \geq 1$ and p be a prime number.

For each $e \in \mathbb{N}$, set $C_e = \operatorname{Lift}^{\eta} \operatorname{RS}_{p^e}(p^e - \alpha)$.

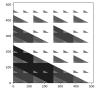
Then, the information rate R_e of C_e approaches 1 when $e \to \infty$.

Theorem [L,N - 2019]

Let $c \ge 1$, $\eta \ge 1$ and p be a prime number. Fix $\gamma = 1 - p^{-c}$. For $e \ge c + 1$, set $\mathcal{C}_e = \operatorname{Lift}^{\eta} \operatorname{RS}_{p^e}(\gamma p^e)$. Then, the information rate R_e of \mathcal{C}_e satisfies:

$$\lim_{e \to \infty} R_e \ge \frac{1}{2\eta} \sum_{\varepsilon=0}^{c-1} (p^{-\varepsilon} - p^{-c})^2 N_{\varepsilon}.$$

Degree set of $\operatorname{Lift}^2 \operatorname{RS}_{2^e}(2^e - 2^{e-c})$ for c = 4. Number of differents shades of grey = c.



$$e = 7$$

$$e = 8$$

Thank you for your attention!