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Some recalls on error correcting codes

Aim of error-correcting codes: Improve/Preserve the quality of data transmission through
space (e.g. telephone networks, satellite communication ) and time (e.g. magnetic tape,
�ash drive).

A message m is sent through a noisy channel. It may be altered but we want receivers to
be able to check consistency of the delivered message, and perhaps to recover data that
has been determined to be corrupted.
General idea: Add some redundancy to a message.
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Some recalls on error correcting codes

Example 1: French social security system - personal number

2 93 01 13 155 363 83
Sex Birth year Month Depart. Town Rank Key

Key ≡ −N [97] where N is the number formed by the 13 �rst digits.
If there is one error, let's say 2 93 01 15 155 363 83
N ′ = 2930115155363 = 30207372735× 97 + 68 and 68 + 83 6≡ 0 [97]
Short key + / - Cannot correct

Example 2: Send three times in a row
I want to send 001. I send m = 001001001.
If there is one error and m̃ = 001101001 is received, it can be recovered.
If there are more than two errors, the message cannot be recovered any more. If
m̃ = 101101001, m or 101101101 ?
Correct one error + / - Message length
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Linear codes

Dé�nition

A linear code C on Fq of length n is a vector subspace Fn
q of dimension k.

Let x ∈ C be a codeword. Its weight is de�ned by

ω(x) = #{i ∈ {1, . . . , n}, xi 6= 0}

Let x, y ∈ C. The Hamming distance between x and y is de�ned by

d(x, y) = #{i ∈ {1, . . . , n}, xi 6= yi} = ω(x− y)

The minimum distance of the code C is de�ned by

d(C) = min{d(x, y) | x, y ∈ C, x 6= y} = min
x∈C

ω(x)

A linear code of length n, dimension k and minimum distance d is called a [n, k, d]-code.
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Linear codes Some bounds over the parameters

Transmission rate: κ = k
n

Relative distance: δ = d
n

We want both κ and δ big, this is not to much redundancy and a good correcting
capacity. But you can't have the best of both worlds...

Singleton bound : δ + κ ≤ 1 + 1
n
.

Gilbert-Varshamov bound : Fix q. When n→ +∞,
sup

C q−ary

{κ(C) | δ(C) = δ} ≥ 1−Hq(δ) where

Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ).
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Linear codes Add structure to get better codes: Algebraic geometric codes

Best codes are known to be algebraic geometric codes. Among them, let us focus on
projective Reed-Muller codes.

On Pr, �x a degree s. Take F ⊂ Fq[X0, X1, . . . , Xr] a vector subspace of homogeneous
polynomial of degree s. Fix a set of n points Fq-rationnels P = {P1, . . . , Pn} ⊂ Pr(Fq),

Given f ∈ F and P a point of Pr, we de�ne the evaluation of f at P as
f(P ) := f(p0, . . . , pr), where (p0 : · · · : pr) is the system of homogeneous coordinates of
P such that the �rst nonzero coordinate starting from the left is set to 1, i.e. is of the
form (0 : · · · : 0 : 1 : pi : · · · : pn).
We can de�ne a linear code as the range of the map

evs :

{
F → Fn

q

f 7→ (f(P1), . . . , f(Pn))

Its length is n. Its dimension is the one of the quotient F/ ker evs.
Assume P = Pr(Fq). Take a codeword evs(f) and consider the hypersurface Hf de�ned
by f = 0. Then

ω(evs(f)) = n−#Hf (Fq)

Then lowerbounding the minimum distance is equivalent to upperbound the number of
Fq-points of such hypersurfaces.
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Linear codes Bound for planes a�ne curves

Theorem [K. Stöhr, F. Voloch]

Let f ∈ Fq[x, y] be an absolutely irreducible polynomial of degree d ≥ 2 with coe�cients
in Fq (characteristic not 2) and denote by C the curve in A2 de�ned by f = 0. Then

#C(Fq) ≤ 1

2
d(d+ q − 1)

if at least one of the points of C is not an in�ection point.

Idea of the proof: Consider the polynomial h ∈ Fq[x, y] de�ned by

h(x, y) = (xq − x)fx + (yq − q)fy
of degree d+ q − 1 and H the curve de�ned by h = 0.

H ∩ C = {P ∈ C | Φ(P ) ∈ TP C}
If H and C have no commun components, Bezout's Theorem gives∑

P∈C∩H

i(P ;H, C) ≤ deg f × deg h

We can prove that for any Fq-point P ∈ C(Fq) on C, i(P,H ∩ C) ≥ 2.
It is true if P is singular. If P is a regular point on C, it is enough to check that H and C
have the same tangent line at P . Then

2#C(Fq) ≤ d(d− 1 + q).
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Linear codes Bound for planes projective curves

Proposition

Let F ∈ Fq[X0, X1, X2] be an absolutely irreducible homogeneous polynomial of degree
d ≥ 2 with coe�cients in Fq (characteristic not 2) and denote by C the curve in P2(k)
de�ned by F = 0. Then

C(Fq) ≤ 1

2
d(d+ q − 1)

if there exists a point of C that is not an in�ection point.

Idea of the proof: Consider the polynomial H ∈ Fq[X0, X1, X2] de�ned by

H = Xq
0FX0 +Xq

1FX1 +Xq
2FX2

and H the curve de�ned by H = 0. Using Euler Identity

dF = X0FX0 +X1FX1 +X2FX2 ,

we can see that on each a�ne chart (xi 6= 0), we are back to study the intersection of f
and h(x, y) = (xq − x)fx + (yq − q)fy.
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Linear codes Bound for curves in P1 × P1

Proposition

Let F ∈ Fq[X0, X1, Y0, Y1] be a absolutely irreducible bihomogeneous polynomial of
bidegree (δX , δY ) with coe�cients in the �nite �eld Fq of characteristic di�erent from 2.
Assume δX , δY ≥ 1.
Let C be the curve in P1 × P1 de�ned by F = 0. Then

#C(Fq) ≤ δXδY +
q + 1

2
(δX + δY ).

Recall: Let C and D be two curves in P1 × P1 of bidegree (δX , δY ) and (δ′X , δ
′
Y ). If they

have no common component, the number of intersection points, counted with
multiplicity, is equal to

C · D = δXδ
′
Y + δ′XδY
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Linear codes What about other surfaces ?

The main idea is to homogenize the polynomial

h(x, y) = (xq − x)fx + (yq − q)fy.

It seems to be possible to generalize this idea to a family of surfaces, toric surfaces.
P2 and P1 × P1 are toric surfaces.

Toric surfaces are naturally endowed with a graded coordinate ring of polynomials and
Euler identities, two essential ingredients in this method.

Thank you for your attention !
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