Algebraic Geometric Codes on Hirzebruch surfaces

Jade Nardi

Institute of Mathematics of Toulouse

SIAM Conference on Applied Algebraic Geometry - 12/07/2019

MS185: Algebraic Geometry Codes

Definition

Let $\eta \in \mathbb{N}$. Definition of the Hirzebruch surface \mathcal{H}_{η} :

- Toric point of view - Toric variety associated to the fan

Definition

Let $\eta \in \mathbb{N}$. Definition of the Hirzebruch surface \mathcal{H}_{η} :

- Toric point of view - Toric variety associated to the fan

- Quotient point of view
$\mathbb{G}_{m} \times \mathbb{G}_{m}$ acts on $\left(\mathbb{A}^{2} \backslash\{(0,0)\}\right) \times\left(\mathbb{A}^{2} \backslash\{(0,0)\}\right)$ as follows.

$$
\begin{aligned}
& (\lambda, \mu) \cdot\left(t_{1}, t_{2}, x_{1}, x_{2}\right)=\left(\lambda t_{1}, \lambda t_{2}, \mu \lambda^{-\eta} x_{1}, \mu x_{2}\right) \\
& \mathcal{H}_{\eta}:=\left(\mathbb{A}^{2} \backslash\{(0,0)\}\right) \times\left(\mathbb{A}^{2} \backslash\{(0,0)\}\right) / \mathbb{G}_{m}^{2}
\end{aligned}
$$

Example: $\mathcal{H}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Embedded in $\mathbb{P}^{\eta+3}$ as a rational scroll

Rational curve: $\left\{\begin{array}{ccc}\mathbb{P}^{1} & \rightarrow & \mathcal{C}_{\eta+1} \subset \mathbb{P}^{\eta+1} \\ {[u, v]} & \mapsto & {\left[u^{i} v^{\eta^{+1-i}}\right]_{i \in\{0, \ldots, \eta+1\}}}\end{array}\right.$

Embedded in $\mathbb{P}^{\eta+3}$ as a rational scroll

Rational curve: $\left\{\begin{array}{ccc}\mathbb{P}^{1} & \rightarrow & \mathcal{C}_{\eta+1} \subset \mathbb{P}^{\eta+1} \\ {[u, v]} & \mapsto & {\left[u^{i} v^{\eta+1-i}\right]_{i \in\{0, \ldots, \eta+1\}}}\end{array}\right.$
Take an isomophism $\phi: \mathbb{P}^{1} \rightarrow \mathcal{C}_{\eta+1}$.

$$
\# \mathcal{H}_{\eta}\left(\mathbb{F}_{q}\right)=(q+1)^{2}
$$

Embedded in $\mathbb{P}^{\eta+3}$ as a rational scroll

Rational curve: $\left\{\begin{array}{ccc}\mathbb{P}^{1} & \rightarrow & \mathcal{C}_{\eta+1} \subset \mathbb{P}^{\eta+1} \\ {[u, v]} & \mapsto & {\left[u^{i} v^{\eta+1-i}\right]_{i \in\{0, \ldots, \eta+1\}}}\end{array}\right.$
Take an isomophism $\phi: \mathbb{P}^{1} \rightarrow \mathcal{C}_{\eta+1}$.

$$
\# \mathcal{H}_{\eta}\left(\mathbb{F}_{q}\right)=(q+1)^{2}
$$

Embedded in $\mathbb{P}^{\eta+3}$ as a rational scroll

Rational curve: $\left\{\begin{array}{ccc}\mathbb{P}^{1} & \rightarrow & \mathcal{C}_{\eta+1} \subset \mathbb{P}^{\eta+1} \\ {[u, v]} & \mapsto & {\left[u^{i} v^{\eta+1-i}\right]_{i \in\{0, \ldots, \eta+1\}}}\end{array}\right.$
Take an isomophism $\phi: \mathbb{P}^{1} \rightarrow \mathcal{C}_{\eta+1}$.

Coordinate ring of \mathcal{H}_{η} : Cox Ring

Polynomial coordinate ring of \mathcal{H}_{η} over $\mathbb{F}_{q}: R=\mathbb{F}_{q}\left[T_{1}, T_{2}, X_{1}, X_{2}\right]$. Endowed with a graduation inherited from the toric structure \sim "degree" of a polynomial

Coordinate ring of \mathcal{H}_{η} : Cox Ring

Polynomial coordinate ring of \mathcal{H}_{η} over $\mathbb{F}_{q}: R=\mathbb{F}_{q}\left[T_{1}, T_{2}, X_{1}, X_{2}\right]$. Endowed with a graduation inherited from the toric structure \sim "degree" of a polynomial

A monomial $M=T_{1}^{c_{1}} T_{2}^{c_{2}} X_{1}^{d_{1}} X_{2}^{d_{2}}$ has bidegree $\left(\delta_{T}, \delta_{X}\right)$ if

$$
\left\{\begin{align*}
\delta_{T} & =c_{1}+c_{2}-\eta d_{1} \tag{1}\\
\delta_{X} & =d_{1}+d_{2}
\end{align*}\right.
$$

Coordinate ring of \mathcal{H}_{η} : Cox Ring

Polynomial coordinate ring of \mathcal{H}_{η} over $\mathbb{F}_{q}: R=\mathbb{F}_{q}\left[T_{1}, T_{2}, X_{1}, X_{2}\right]$. Endowed with a graduation inherited from the toric structure \sim "degree" of a polynomial

A monomial $M=T_{1}^{c_{1}} T_{2}^{c_{2}} X_{1}^{d_{1}} X_{2}^{d_{2}}$ has bidegree $\left(\delta_{T}, \delta_{X}\right)$ if

$$
\begin{cases}\delta_{T} & =c_{1}+c_{2}-\eta d_{1} \tag{1}\\ \delta_{X} & =d_{1}+d_{2}\end{cases}
$$

Set $R\left(\delta_{T}, \delta_{X}\right)$ the \mathbb{F}_{q}-v.s. spanned by monomials of bidegree $\left(\delta_{T}, \delta_{X}\right)$.

$$
R=\bigoplus_{\left(\delta_{T}, \delta_{X}\right) \in \mathbb{Z}^{2}} R\left(\delta_{T}, \delta_{X}\right)
$$

Definition of an evaluation map on \mathcal{H}_{η}

Similarly to projective Reed-Muller codes, evaluating polynomials \sim Meaning à la Lachaud
Points on $\mathcal{H}_{\eta} \leftrightarrow$ Orbits under

$$
(\lambda, \mu) \cdot\left(t_{1}, t_{2}, x_{1}, x_{2}\right)=\left(\lambda t_{1}, \lambda t_{2}, \mu \lambda^{-\eta} x_{1}, \mu x_{2}\right)
$$

$\mathbb{F}_{q^{-}}$-rational points \leftrightarrow Orbits with a \mathbb{F}_{q}-rational representative.

Definition of an evaluation map on \mathcal{H}_{η}

Similarly to projective Reed-Muller codes, evaluating polynomials \sim Meaning à la Lachaud
Points on $\mathcal{H}_{\eta} \leftrightarrow$ Orbits under

$$
(\lambda, \mu) \cdot\left(t_{1}, t_{2}, x_{1}, x_{2}\right)=\left(\lambda t_{1}, \lambda t_{2}, \mu \lambda^{-\eta} x_{1}, \mu x_{2}\right)
$$

$\mathbb{F}_{q^{-}}$-rational points \leftrightarrow Orbits with a \mathbb{F}_{q}-rational representative.
Evaluate a polynomial at the unique representative of the following forms:

$$
(1, a, 1, b) \quad(0,1,1, b) \quad(1, a, 0,1) \quad(0,1,0,1)
$$

with $a, b \in \mathbb{F}_{q}$.

Evaluation code on \mathcal{H}_{η}

Evaluation code $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ defined as the image of

$$
\mathrm{ev}_{\left(\delta_{T}, \delta_{X}\right)}:\left\{\begin{array}{rl}
R\left(\delta_{T}, \delta_{X}\right) & \rightarrow \mathbb{F}_{q}^{(q+1)^{2}} \tag{2}\\
F & \mapsto
\end{array}(F(P))_{P \in \mathcal{H} \eta\left(\mathbb{F}_{q}\right)} .\right.
$$

Evaluation code on \mathcal{H}_{η}

Evaluation code $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ defined as the image of

$$
\mathrm{ev}_{\left(\delta_{T}, \delta_{X}\right)}:\left\{\begin{array}{rl}
R\left(\delta_{T}, \delta_{X}\right) & \rightarrow \mathbb{F}_{q}^{(q+1)^{2}} \tag{2}\\
F & \mapsto
\end{array}(F(P))_{P \in \mathcal{H} \eta\left(\mathbb{F}_{q}\right)} .\right.
$$

Implementation: No knowledge about a Hirzeruch surface needed. Enough to build the set of polynomials and evaluate them at the $(q+1)^{2}$ points $(1, a, 1, b),(0,1,1, b),(1, a, 0,1)$ and $(0,1,0,1)$.

Motivation

- Leaving the case rk $\operatorname{Pic} S=1^{1}$ (easy case to compute the minimum distance)
- Codes on Hirzebruch surfaces: already studied by toric codes ${ }^{2}$ Toric codes on evaluate at points on the torus (without zero coordinate)
\sim Affine \rightarrow Projective case: increase the parameters
- Starting point: Codes on rational surface scrolls ${ }^{3}$

[^0]
Motivation

- Leaving the case $\operatorname{rk} \operatorname{Pic} S=1^{1}$ (easy case to compute the minimum distance)
- Codes on Hirzebruch surfaces: already studied by toric codes ${ }^{2}$ Toric codes on evaluate at points on the torus (without zero coordinate)
\sim Affine \rightarrow Projective case: increase the parameters
- Starting point: Codes on rational surface scrolls ${ }^{3}$

Aim: Study the codes $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ for any $\left(\delta_{T}, \delta_{X}\right) \in \mathbb{Z}^{2}$ on \mathbb{F}_{q} for any size of q, taking advantage of the toric structure.

[^1]
Dimension of the code

Dimension of the code

$$
\begin{gathered}
\\
C_{\eta}\left(\delta_{T}, \delta_{X}\right) \\
\frac{R\left(\delta_{T}, \delta_{X}\right)}{\operatorname{ker} \operatorname{ev}_{\left(\delta_{T}, \delta_{X}\right)}}
\end{gathered}
$$

Restrict the relation on monomials
 $M \equiv M^{\prime} \Leftrightarrow M^{\prime}-M \in \operatorname{ker} \operatorname{ev}_{\left(\delta_{T}, \delta_{X}\right)}$

Dimension of the code

Restrict the relation on monomials
 $M \equiv M^{\prime} \Leftrightarrow M^{\prime}-M \in \operatorname{kerev}\left(\delta_{T}, \delta_{X}\right)$

 of $R\left(\delta_{T}, \delta_{X}\right)$

Lattice points of a polygon

Dimension of the code

Restrict the relation on monomials
 $M \equiv M^{\prime} \Leftrightarrow M^{\prime}-M \in \operatorname{kerev}\left(\delta_{T}, \delta_{X}\right)$

Representation of $R\left(\delta_{T}, \delta_{X}\right)$ as a polygon

$T_{1}^{c_{1}} T_{2}^{c_{2}} X_{1}^{d_{1}} X_{2}^{d_{2}} \in R\left(\delta_{T}, \delta_{X}\right)$ iff $d_{1}+d_{2}=\delta_{X}$ and $c_{1}+c_{2}-\eta d_{1}=\delta_{T}$.
Fix $\left(\delta_{T}, \delta_{X}\right)$. A monomial is uniquely determined by the couple $\left(d_{2}, c_{2}\right)$ in

$$
P\left(\delta_{T}, \delta_{X}\right)=\left\{\left(d_{2}, c_{2}\right) \in \mathbb{N}^{2} \mid 0 \leq d_{2} \leq \delta_{X} \text { and } 0 \leq c_{2} \leq \delta-\eta d_{2}\right\}
$$

Representation of $R\left(\delta_{T}, \delta_{X}\right)$ as a polygon

$$
T_{1}^{c_{1}} T_{2}^{c_{2}} X_{1}^{d_{1}} X_{2}^{d_{2}} \in R\left(\delta_{T}, \delta_{X}\right) \text { iff } d_{1}+d_{2}=\delta_{X} \text { and } c_{1}+c_{2}-\eta d_{1}=\delta_{T}
$$

Fix $\left(\delta_{T}, \delta_{X}\right)$. A monomial is uniquely determined by the couple $\left(d_{2}, c_{2}\right)$ in

$$
P\left(\delta_{T}, \delta_{X}\right)=\left\{\left(d_{2}, c_{2}\right) \in \mathbb{N}^{2} \mid 0 \leq d_{2} \leq \delta_{X} \text { and } 0 \leq c_{2} \leq \delta-\eta d_{2}\right\} .
$$

$\eta=0$
e.g. $\mathcal{P}(7,4)$

$\eta>0, \delta_{T}>0$
e.g. $\mathcal{P}(2,3)$ in \mathcal{H}_{2}

$\eta>0, \delta_{T} \leq 0$
e.g. $\mathcal{P}(-2,5)$ in \mathcal{H}_{2}

Monomials of $R\left(\delta_{T}, \delta_{X}\right) \leftrightarrow$ Lattice points of $\mathcal{P}\left(\delta_{T}, \delta_{X}\right)$

Characterization for equivalent monomials/lattice points

Proposition

$$
\begin{aligned}
& T_{1}^{c_{1}} T_{2}^{c_{2}} X_{1}^{d_{1}} X_{2}^{d_{2}} \equiv T_{1}^{c_{1}^{\prime}} T_{2}^{c_{2}^{\prime}} X_{1}^{d_{1}^{\prime}} X_{2}^{d_{2}^{\prime}} \\
& \Uparrow \\
&\left\{\begin{aligned}
q-1 & \mid d_{i}-d_{i}^{\prime}, \\
q-1 & \mid c_{j}-c_{j}^{\prime}, \\
d_{i}=0 & \Leftrightarrow d_{i}^{\prime}=0, \\
c_{j}=0 & \Leftrightarrow c_{j}^{\prime}=0 .
\end{aligned}\right.
\end{aligned}
$$

Characterization for equivalent monomials/lattice points

Proposition

$$
T_{1}^{c_{1}} T_{2}^{c_{2}} X_{1}^{d_{1}} X_{2}^{d_{2}} \equiv T_{1}^{c_{1}^{\prime}} T_{2}^{c_{2}^{\prime}} X_{1}^{d_{1}^{\prime}} X_{2}^{d_{2}^{\prime}}
$$

$$
\Uparrow
$$

$$
\left\{\begin{aligned}
q-1 & \mid d_{i}-d_{i}^{\prime}, \\
q-1 & \mid c_{j}-c_{j}^{\prime}, \\
d_{i}=0 & \Leftrightarrow d_{i}^{\prime}=0, \\
c_{j}=0 & \Leftrightarrow c_{j}^{\prime}=0
\end{aligned}\right.
$$

$\mathcal{P}(5,5)$ on \mathbb{F}_{4}

Characterization for equivalent monomials/lattice points

$$
\bar{c}_{2}
$$

$$
\begin{aligned}
& \text { Proposition } \\
& \qquad \begin{array}{c}
T_{1}^{c_{1}} T_{2}^{c_{2}} X_{1}^{d_{1}} X_{2}^{d_{2}} \equiv T_{1}^{c_{1}^{\prime}} T_{2}^{c_{2}^{\prime}} X_{1}^{d_{1}^{\prime}} X_{2}^{d_{2}^{\prime}} \\
\\
\Downarrow
\end{array} \\
& \left\{\begin{aligned}
q-1 & \mid d_{i}-d_{i}^{\prime}, \\
q-1 & \mid c_{j}-c_{j}^{\prime}, \\
d_{i}=0 & \Leftrightarrow d_{i}^{\prime}=0, \\
c_{j}=0 & \Leftrightarrow c_{j}^{\prime}=0 .
\end{aligned}\right.
\end{aligned}
$$

$\mathcal{P}(5,5)$ on \mathbb{F}_{4}

Characterization for equivalent monomials/lattice points

Proposition
$T_{1}^{c_{1}} T_{2}^{c_{2}} X_{1}^{d_{1}} X_{2}^{d_{2}} \equiv T_{1}^{c_{1}^{\prime}} T_{2}^{c_{2}^{\prime}} X_{1}^{d_{1}^{\prime}} X_{2}^{d_{2}^{\prime}}$
$\left\{\begin{aligned} q-1 & \mid d_{i}-d_{i}^{\prime}, \\ q-1 & \mid c_{j}-c_{j}^{\prime}, \\ d_{i}=0 & \Leftrightarrow d_{i}^{\prime}=0, \\ c_{j}=0 & \Leftrightarrow c_{j}^{\prime}=0 .\end{aligned}\right.$

$\mathcal{P}(5,5)$ on \mathbb{F}_{4}

Choice of representatives among lattice points

d_{2} as small as possible then c_{2} as small as possible
\sim Remainder modulo $q-1$ unless 0 or maximum

Choice of representatives among lattice points

d_{2} as small as possible then c_{2} as small as possible
\sim Remainder modulo $q-1$ unless 0 or maximum

Choice of representatives among lattice points

d_{2} as small as possible then c_{2} as small as possible
\sim Remainder modulo $q-1$ unless 0 or maximum

Choice of representatives among lattice points

d_{2} as small as possible then c_{2} as small as possible
\sim Remainder modulo $q-1$ unless 0 or maximum

Choice of representatives among lattice points

d_{2} as small as possible then c_{2} as small as possible
\sim Remainder modulo $q-1$ unless 0 or maximum

Choice of representatives among lattice points

d_{2} as small as possible then c_{2} as small as possible
\sim Remainder modulo $q-1$ unless 0 or maximum

Choice of representatives among lattice points

d_{2} as small as possible then c_{2} as small as possible
\sim Remainder modulo $q-1$ unless 0 or maximum

Choice of representatives among lattice points

d_{2} as small as possible then c_{2} as small as possible \sim Remainder modulo $q-1$ unless 0 or maximum

Choice of representatives among lattice points

d_{2} as small as possible then c_{2} as small as possible
\sim Remainder modulo $q-1$ unless 0 or maximum

000 000000000

Explicit formula for the dimension of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$

Explicit formula for the dimension of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$

Theorem [N. - 2018]

$$
\operatorname{dim} C_{0}\left(\delta_{T}, \delta_{X}\right)=\left(\min \left(\delta_{T}, q\right)+1\right)\left(\min \left(\delta_{X}, q\right)+1\right)
$$

If $\eta \geq 2$, set $A=\min \left(\frac{\delta}{\eta}, \delta_{X}\right), m=\min (\lfloor A\rfloor, q-1)$,

$$
h=\left\{\begin{array}{cl}
\min \left(\delta_{T}, q\right)+1 & \text { if } \delta_{T} \geq 0 \text { and } q \leq \delta_{X} \\
-1 & \text { if } \delta_{T} \leq 0, q \leq A \text { and } \eta \mid \delta_{T} \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
s=\frac{\delta-q}{\eta} \text { and } \tilde{s}= \begin{cases}\lfloor s\rfloor & \text { if } s \in[0, m] \\ -1 & \text { if } s<0 \\ m & \text { if } s>m\end{cases}
$$

Then
$\operatorname{dim} C_{\eta}\left(\delta_{T}, \delta_{X}\right)=(q+1)(\tilde{s}+1)+(m-\tilde{s})\left(\delta+1-\eta\left(\frac{m+\tilde{s}+1}{2}\right)\right)+h$.

Explicit formula for the minimum distance of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$

Theorem [N. - 2018]

- For $\eta=0, d_{0}\left(\delta_{T}, \delta_{X}\right)=\max \left(q-\delta_{X}+1,1\right) \max \left(q-\delta_{T}+1,1\right)$.
- for $\eta \geq 2$,
- If $q>\delta$, then

$$
d_{\eta}\left(\delta_{T}, \delta_{X}\right)=\left(q+\mathbb{1}_{\delta_{X}=0}\right)(q-\delta+1),
$$

- If $\max \left(\frac{\delta}{\eta+1}, \delta_{T}\right)<q \leq \delta$, then

$$
d_{\eta}\left(\delta_{T}, \delta_{X}\right)=q-\left\lfloor\frac{\delta-q}{\eta}\right\rfloor
$$

- If $q \leq \max \left(\frac{\delta}{\eta+1}, \delta_{T}\right)$,

$$
d_{\eta}\left(\delta_{T}, \delta_{X}\right)=\left\{\begin{array}{cc}
\max \left(q-\delta_{X}+1,1\right) & \text { if } \delta_{T} \geq 0, \\
1 & \text { if } \delta_{T}<0,
\end{array}\right.
$$

PIR Protocol

PIR Protocol

How to retrieve a datum stored on servers without giving any information about it?
\sim Aim of Private Information Retrieval protocols

How to retrieve a datum stored on servers without giving any information about it?
\sim Aim of Private Information Retrieval protocols
[Augot,Levy-dit-Vehel,Shikfa-14] Share the database on several servers.

PIR Protocol

How to retrieve a datum stored on servers without giving any information about it?
$~$ Aim of Private Information Retrieval protocols
[Augot,Levy-dit-Vehel,Shikfa-14] Share the database on several servers.
$\mathcal{H}_{\eta}\left(\mathbb{F}_{q}\right)=\bigsqcup_{i=0}^{q} L_{i}\left(\mathbb{F}_{q}\right)$
(lines of the ruling)
Database: Codewords of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ punctured at the points lying on $X_{1}=0$ shared by $\mathbf{q}+\mathbf{1}$ servers.

Local property of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ and PIR Protocol on \mathcal{H}_{η}

η-line: $=X_{2}=X_{1} F\left(T_{1}, T_{2}\right)$ with F homogeneous of degree η

Local property of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ and PIR Protocol on \mathcal{H}_{η}

η-line: $=X_{2}=X_{1} F\left(T_{1}, T_{2}\right)$ with F homogeneous of degree η

Restricting a word of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ along an η line gives a word of a $\operatorname{PRS}(\delta)$.

Wanted datum: $c_{P_{0}}$ with $c \in C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ and $\delta<q-2$.

Local property of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ and PIR Protocol on \mathcal{H}_{η}

η-line: $=X_{2}=X_{1} F\left(T_{1}, T_{2}\right)$ with F homogeneous of degree η

Randomly pick an η-line L containing P_{0}.

Local property of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ and PIR Protocol on \mathcal{H}_{η}

η-line: $=X_{2}=X_{1} F\left(T_{1}, T_{2}\right)$ with F homogeneous of degree η

Randomly pick an η-line L containing P_{0}.
Server \leftrightarrow line not containing P_{0} : ask for $c_{L_{i} \cap L}$

Local property of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ and PIR Protocol on \mathcal{H}_{η}

η-line: $=X_{2}=X_{1} F\left(T_{1}, T_{2}\right)$ with F homogeneous of degree η

Randomly pick an η-line L containing P_{0}.
Server \leftrightarrow line not containing P_{0} : ask for $c_{L_{i} \cap L}$
Server \leftrightarrow line containing P_{0} : ask for $c_{P_{1}}$ for P_{1} random on this line

Local property of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ and PIR Protocol on \mathcal{H}_{η}

η-line: $=X_{2}=X_{1} F\left(T_{1}, T_{2}\right)$ with F homogeneous of degree η

Restricting a word of $C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ along an η line gives a word of a $\operatorname{PRS}(\delta)$.

Wanted datum: $c_{P_{0}}$ with $c \in C_{\eta}\left(\delta_{T}, \delta_{X}\right)$ and $\delta<q-2$.

Randomly pick an η-line L containing P_{0}.
Server \leftrightarrow line not containing P_{0} : ask for $c_{L_{i} \cap L}$
Server \leftrightarrow line containing P_{0} : ask for $c_{P_{1}}$ for P_{1} random on this line
\Rightarrow Word of $\operatorname{PRS}(\delta)$ with 1 error $=$ easily correctable!

What's new?

Case $\eta=1$ already known (PIR protocol from LDC)

Why take $\eta>1$?

What's new?

Case $\eta=1$ already known (PIR protocol from LDC)
Why take $\eta>1$? What if servers communicate...?

What's new?

Case $\eta=1$ already known (PIR protocol from LDC)
Why take $\eta>1$? What if servers communicate...?
$\eta=1 \Rightarrow$ the protocol does not resist to colluding servers!
$\eta>1 \Rightarrow$ the protocol resists to the collusion of η servers!

What's new?

Case $\eta=1$ already known (PIR protocol from LDC)
Why take $\eta>1$? What if servers communicate...?
$\eta=1 \Rightarrow$ the protocol does not resist to colluding servers!
$\eta>1 \Rightarrow$ the protocol resists to the collusion of η servers!
... Counterpart...

What's new?

Case $\eta=1$ already known (PIR protocol from LDC)
Why take $\eta>1$? What if servers communicate...?
$\eta=1 \Rightarrow$ the protocol does not resist to colluding servers!
$\eta>1 \Rightarrow$ the protocol resists to the collusion of η servers!
... Counterpart... We want δ as near to q as possible and

$$
\operatorname{dim} C_{\eta}\left(\delta_{T}, \delta_{X}\right)=\left(\delta_{X}+1\right)\left(\frac{\delta}{\eta}-\eta \frac{\delta_{X}}{2}+1\right)
$$

decreases as η grows \Rightarrow Loss of storage when η grows.
Can be fixed by lifting process (introduced by Guo, Kopparty, Sudan in 2013)...

More on ArXiv:

- About these codes: https://arxiv.org/abs/1801.08407
- About lift: https://arxiv.org/abs/1904. 08696 (joint work with Julien Lavauzelle)

Thank you for your attention! Questions?

[^0]: ${ }^{1}$ Zarzar (2007), Little,Sheck (2018)
 ${ }^{2}$ Hansen (2002), Joyner (2004), Little,Sheck (2016)...
 ${ }^{3}$ Carvalho, Neumann (2016)

[^1]: ${ }^{1}$ Zarzar (2007), Little,Sheck (2018)
 ${ }^{2}$ Hansen (2002), Joyner (2004), Little,Sheck (2016)...
 ${ }^{3}$ Carvalho, Neumann (2016)

