Algebraic Geometric Codes on Hirzebruch surfaces

Jade Nardi

Institute of Mathematics of Toulouse

SIAM Conference on Applied Algebraic Geometry - 12/07/2019

MS185: Algebraic Geometry Codes

Let $\eta \in \mathbb{N}$. Definition of the Hirzebruch surface \mathcal{H}_{η} :

• Toric point of view - Toric variety associated to the fan

Let $\eta \in \mathbb{N}$. Definition of the Hirzebruch surface \mathcal{H}_{η} :

• Toric point of view - Toric variety associated to the fan

Quotient point of view

 $\mathbb{G}_m \times \mathbb{G}_m$ acts on $(\mathbb{A}^2 \setminus \{(0,0)\}) \times (\mathbb{A}^2 \setminus \{(0,0)\})$ as follows.

$$(\lambda, \mu) \cdot (t_1, t_2, x_1, x_2) = (\lambda t_1, \lambda t_2, \mu \lambda^{-\eta} x_1, \mu x_2).$$

$$\mathcal{H}_{\eta} \coloneqq \left(\mathbb{A}^2 \setminus \{(0,0)\}\right) \times \left(\mathbb{A}^2 \setminus \{(0,0)\}\right) / \mathbb{G}_m^2.$$

Example: $\mathcal{H}_0 = \mathbb{P}^1 \times \mathbb{P}^1.$

Rational curve:
$$\begin{cases} \mathbb{P}^{1} \to \mathcal{C}_{\eta+1} \subset \mathbb{P}^{\eta+1} \\ [u,v] \mapsto [u^{i}v^{\eta+1-i}]_{i \in \{0,...,\eta+1\}} \end{cases}$$

э.

Rational curve:
$$\begin{cases} \mathbb{P}^1 \to \mathcal{C}_{\eta+1} \subset \mathbb{P}^{\eta+1} \\ [u,v] \mapsto [u^i v^{\eta+1-i}]_{i \in \{0,...,\eta+1\}} \end{cases}$$

Take an isomophism $\phi : \mathbb{P}^1 \to \mathcal{C}_{\eta+1}.$

 $#\mathcal{H}_n(\mathbb{F}_q) = (q+1)^2$

э

イロト イボト イヨト イヨト

Rational curve:
$$\begin{cases} \mathbb{P}^1 \to \mathcal{C}_{\eta+1} \subset \mathbb{P}^{\eta+1} \\ [u,v] \mapsto [u^i v^{\eta+1-i}]_{i \in \{0,...,\eta+1\}} \end{cases}$$

Take an isomophism $\phi : \mathbb{P}^1 \to \mathcal{C}_{\eta+1}.$

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hirzebruch surfaces 0●0		PIR protocol	The end 0
Embedded in $\mathbb{P}^{\eta+3}$ a	s a rational scroll		

Rational curve:
$$\begin{cases} \mathbb{P}^1 \to \mathcal{C}_{\eta+1} \subset \mathbb{P}^{\eta+1} \\ [u,v] \mapsto [u^i v^{\eta+1-i}]_{i \in \{0,...,\eta+1\}} \end{cases}$$

Take an isomophism $\phi : \mathbb{P}^1 \to \mathcal{C}_{\eta+1}.$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Hirzebruch surfaces	Error-correcting codes on Hirzebruch surfaces	PIR protocol	The end
000	000000000	000	
Coordinate ring of \mathcal{F}	\mathcal{H}_η : Cox Ring		

Polynomial coordinate ring of \mathcal{H}_{η} over \mathbb{F}_q : $R = \mathbb{F}_q[T_1, T_2, X_1, X_2]$. Endowed with a **graduation** inherited from the toric structure \sim "degree" of a polynomial Polynomial coordinate ring of \mathcal{H}_{η} over \mathbb{F}_q : $R = \mathbb{F}_q[T_1, T_2, X_1, X_2]$. Endowed with a **graduation** inherited from the toric structure \sim "degree" of a polynomial

A monomial $M = T_1^{c_1}T_2^{c_2}X_1^{d_1}X_2^{d_2}$ has bidegree (δ_T, δ_X) if

$$\begin{cases} \delta_T = c_1 + c_2 - \eta d_1, \\ \delta_X = d_1 + d_2. \end{cases}$$
(1)

Polynomial coordinate ring of \mathcal{H}_{η} over \mathbb{F}_q : $R = \mathbb{F}_q[T_1, T_2, X_1, X_2]$. Endowed with a **graduation** inherited from the toric structure \sim "degree" of a polynomial

A monomial $M = T_1^{c_1}T_2^{c_2}X_1^{d_1}X_2^{d_2}$ has **bidegree** (δ_T, δ_X) if

$$\begin{cases} \delta_T = c_1 + c_2 - \eta d_1, \\ \delta_X = d_1 + d_2. \end{cases}$$
(1)

Set $R(\delta_T, \delta_X)$ the \mathbb{F}_q -v.s. spanned by monomials of bidegree (δ_T, δ_X) .

$$R = \bigoplus_{(\delta_T, \delta_X) \in \mathbb{Z}^2} R(\delta_T, \delta_X)$$

Similarly to projective Reed-Muller codes, evaluating polynomials \sim Meaning à la Lachaud Points on $\mathcal{H}_n \leftrightarrow$ Orbits under

 $(\lambda, \mu) \cdot (t_1, t_2, x_1, x_2) = (\lambda t_1, \lambda t_2, \mu \lambda^{-\eta} x_1, \mu x_2).$

 \mathbb{F}_q -rational points \leftrightarrow Orbits with a \mathbb{F}_q -rational representative.

Similarly to projective Reed-Muller codes, evaluating polynomials \sim Meaning à la Lachaud Points on $\mathcal{H}_n \leftrightarrow$ Orbits under

 $(\lambda, \mu) \cdot (t_1, t_2, x_1, x_2) = (\lambda t_1, \lambda t_2, \mu \lambda^{-\eta} x_1, \mu x_2).$

 \mathbb{F}_q -rational points \leftrightarrow Orbits with a \mathbb{F}_q -rational representative.

Evaluate a polynomial at the **unique** representative of the following forms :

(1, a, 1, b) (0, 1, 1, b) (1, a, 0, 1) (0, 1, 0, 1)

with $a, b \in \mathbb{F}_q$.

	Error-correcting codes on Hirzebruch surfaces	PIR protocol 000	The end O
Evaluation code on	\mathcal{H}_η		

Evaluation code $C_\eta(\delta_T,\delta_X)$ defined as the image of

$$\operatorname{ev}_{(\delta_T,\delta_X)}: \begin{cases} R(\delta_T,\delta_X) \to \mathbb{F}_q^{(q+1)^2} \\ F \mapsto (F(P))_{P \in \mathcal{H}\eta(\mathbb{F}_q)}. \end{cases}$$
(2)

-∢ ≣⇒

	Error-correcting codes on Hirzebruch surfaces	PIR protocol	The end
	00000000	000	O
Evaluation code on	\mathcal{H}_{η}		

Evaluation code $C_{\eta}(\delta_T, \delta_X)$ defined as the image of

$$\operatorname{ev}_{(\delta_T,\delta_X)}: \begin{cases} R(\delta_T,\delta_X) \to \mathbb{F}_q^{(q+1)^2} \\ F \mapsto (F(P))_{P \in \mathcal{H}\eta(\mathbb{F}_q)}. \end{cases}$$
(2)

Implementation: No knowledge about a Hirzeruch surface needed. Enough to build the set of polynomials and evaluate them at the $(q+1)^2$ points (1, a, 1, b), (0, 1, 1, b), (1, a, 0, 1) and (0, 1, 0, 1).

	Error-correcting codes on Hirzebruch surfaces	PIR protocol	The end
	00000000	000	0
Motivation			

- Leaving the case $\operatorname{rk}\operatorname{Pic} S = 1^1$ (easy case to compute the minimum distance)
- Codes on Hirzebruch surfaces: already studied by toric codes² Toric codes on evaluate at points on the torus (without zero coordinate)
 - \rightsquigarrow Affine \rightarrow Projective case: increase the parameters
- Starting point: Codes on rational surface scrolls³

¹Zarzar (2007), Little,Sheck (2018)

²Hansen (2002), Joyner (2004), Little,Sheck (2016)...

³Carvalho, Neumann (2016)

Algebraic Geometric Codes on Hirzebruch surfaces

	Error-correcting codes on Hirzebruch surfaces	PIR protocol	The end
	oo●oooooo	000	O
Motivation			

- Leaving the case $\operatorname{rk}\operatorname{Pic} S = 1^1$ (easy case to compute the minimum distance)
- Codes on Hirzebruch surfaces: already studied by toric codes² Toric codes on evaluate at points on the torus (without zero coordinate)
 - \rightsquigarrow Affine \rightarrow Projective case: increase the parameters
- Starting point: Codes on rational surface scrolls³

Aim: Study the codes $C_{\eta}(\delta_T, \delta_X)$ for any $(\delta_T, \delta_X) \in \mathbb{Z}^2$ on \mathbb{F}_q for any size of q, taking advantage of the **toric** structure.

```
<sup>1</sup>Zarzar (2007), Little,Sheck (2018)
```

²Hansen (2002), Joyner (2004), Little,Sheck (2016)...

³Carvalho, Neumann (2016)

Algebraic Geometric Codes on Hirzebruch surfaces

	Error-correcting codes on Hirzebruch surfaces	PIR protocol	The end
000	0000000	000	
Dimension of the co	de		

$$C_{\eta}(\delta_{T}, \delta_{X})$$

$$\wr I$$

$$R(\delta_{T}, \delta_{X})$$

$$\ker ev_{(\delta_{T}, \delta_{X})}$$

æ

	Error-correcting codes on Hirzebruch surfaces	PIR protocol 000	The end 0
Dimension of the co	de		

$$C_{\eta}(\delta_{T}, \delta_{X})$$

$$\wr I$$

$$R(\delta_{T}, \delta_{X})$$

$$\ker ev_{(\delta_{T}, \delta_{X})}$$

Restrict the relation on **monomials** $M \equiv M' \Leftrightarrow M' - M \in \ker \operatorname{ev}_{(\delta_T, \delta_X)}$

	Error-correcting codes on Hirzebruch surfaces	PIR protocol 000	The end 0
Dimension of the co	de		

$$C_{\eta}(\delta_{T}, \delta_{X})$$

$$(\delta_{T}, \delta_{X})$$

$$(\delta_{T}, \delta_{X})$$

$$(\delta_{T}, \delta_{X})$$

$$(\delta_{T}, \delta_{X})$$

Restrict the relation on **monomials** $M \equiv M' \Leftrightarrow M' - M \in \ker \operatorname{ev}_{(\delta_T, \delta_X)}$

	Error-correcting codes on Hirzebruch surfaces	PIR protocol 000	The end 0
Dimension of the co	de		

$$C_{\eta}(\delta_{T}, \delta_{X})$$

$$(\delta_{T}, \delta_{X})$$

$$R(\delta_{T}, \delta_{X})$$

$$M(\delta_{T}, \delta_{X})$$

$$\equiv$$

$$(\delta_{T}, \delta_{X})$$

Restrict the relation on **monomials** $M \equiv M' \Leftrightarrow M' - M \in \ker \operatorname{ev}_{(\delta_T, \delta_X)}$

	Error-correcting codes on Hirzebruch surfaces	PIR protocol 000	The end O
Representation of R	$r(\delta_T,\delta_X)$ as a polygon		

 $T_1^{c_1}T_2^{c_2}X_1^{d_1}X_2^{d_2} \in R(\delta_T, \delta_X) \text{ iff } d_1 + d_2 = \delta_X \text{ and } c_1 + c_2 - \eta d_1 = \delta_T.$

Fix (δ_T, δ_X) . A monomial is *uniquely determined* by the couple (d_2, c_2) in

 $P(\delta_T, \delta_X) = \{ (d_2, c_2) \in \mathbb{N}^2 \mid 0 \le d_2 \le \delta_X \text{ and } 0 \le c_2 \le \delta - \eta d_2 \}.$

 $T_1^{c_1}T_2^{c_2}X_1^{d_1}X_2^{d_2} \in R(\delta_T, \delta_X) \text{ iff } d_1 + d_2 = \delta_X \text{ and } c_1 + c_2 - \eta d_1 = \delta_T.$

Fix (δ_T, δ_X) . A monomial is *uniquely determined* by the couple (d_2, c_2) in

 $P(\delta_T, \delta_X) = \{ (d_2, c_2) \in \mathbb{N}^2 \mid 0 \le d_2 \le \delta_X \text{ and } 0 \le c_2 \le \delta - \eta d_2 \}.$

Monomials of $R(\delta_T, \delta_X) \leftrightarrow$ Lattice points of $\mathcal{P}(\delta_T, \delta_X)$

• • = • • = •

OOO		000	o The end	
Characterization for equivalent monomials/lattice points				

Proposition

$$T_{1}^{c_{1}}T_{2}^{c_{2}}X_{1}^{d_{1}}X_{2}^{d_{2}} \equiv T_{1}^{c_{1}'}T_{2}^{c_{2}'}X_{1}^{d_{1}'}X_{2}^{d_{2}'}$$

$$\begin{cases} q-1 & |d_{i}-d_{i}', \\ q-1 & |c_{j}-c_{j}', \\ d_{i}=0 & \Leftrightarrow d_{i}'=0, \\ c_{j}=0 & \Leftrightarrow c_{j}'=0. \end{cases}$$

Algebraic Geometric Codes on Hirzebruch surfaces

< ロ > < 同 > < 三 > < 三 >

< ロ > < 同 > < 三 > < 三 >

▲ □ ▶ ▲ □ ▶ ▲

< 同 × I = >

< 同 × I = >

< 同 × I = >

	Error-correcting codes on Hirzebruch surfaces	PIR protocol	The end
	0000000●0	000	0
Explicit formula for	the dimension of $C_\eta(\delta_T,\delta_X)$		

æ

Theorem [N. - 2018]

$$\dim C_0(\delta_T, \delta_X) = (\min(\delta_T, q) + 1) (\min(\delta_X, q) + 1)$$

If
$$\eta \ge 2$$
, set $A = \min\left(\frac{\delta}{\eta}, \delta_X\right)$, $m = \min(\lfloor A \rfloor, q-1)$,

$$h = \begin{cases} \min(\delta_T, q) + 1 & \text{if } \delta_T \ge 0 \text{ and } q \le \delta_X, \\ -1 & \text{if } \delta_T \le 0, \ q \le A \text{ and } \eta \mid \delta_T, \\ 0 & \text{otherwise,} \end{cases}$$

$$s = \frac{\delta - q}{\eta} \text{ and } \tilde{s} = \begin{cases} \lfloor s \rfloor & \text{if } s \in [0, m], \\ -1 & \text{if } s < 0, \\ m & \text{if } s > m. \end{cases}$$

Then

$$\dim C_{\eta}(\delta_T, \delta_X) = (q+1)(\tilde{s}+1) + (m-\tilde{s})\left(\delta + 1 - \eta\left(\frac{m+\tilde{s}+1}{2}\right)\right) + h.$$

	Error-correcting codes on Hirzebruch surfaces	PIR protocol 000	The end O
Explicit formula	for the minimum distance of $C_{\pi}(\delta_{T})$	$(\delta \mathbf{v})$	

Theorem [N. - 2018]

- For $\eta = 0$, $d_0(\delta_T, \delta_X) = \max(q \delta_X + 1, 1) \max(q \delta_T + 1, 1)$.
- for $\eta \geq 2$,
 - If $q > \delta$, then

$$d_{\eta}(\delta_T, \delta_X) = (q + \mathbb{1}_{\delta_X = 0})(q - \delta + 1),$$

• If
$$\max\left(\frac{\delta}{\eta+1}, \delta_T\right) < q \le \delta$$
, then

$$d_{\eta}(\delta_T, \delta_X) = q - \left\lfloor \frac{\delta - q}{\eta} \right\rfloor,$$

• If
$$q \le \max\left(\frac{\delta}{\eta+1}, \delta_T\right)$$
,
 $d_{\eta}(\delta_T, \delta_X) = \begin{cases} \max(q - \delta_X + 1, 1) & \text{if } \delta_T \ge 0, \\ 1 & \text{if } \delta_T < 0, \end{cases}$

3

	PIR protocol ●00	The end O
PIR Protocol		

Algebraic Geometric Codes on Hirzebruch surfaces

Ξ.

	PIR protocol ●00	The end O
PIR Protocol		

How to retrieve a datum stored on servers without giving any information about it?

 \rightsquigarrow Aim of Private Information Retrieval protocols

		PIR protocol ●00	The end O
PIR Protocol			
How to re	trieve a datum stored on servers	s without giving	g

any information about it?

~ Aim of **P**rivate Information **R**etrieval protocols [Augot,Levy-dit-Vehel,Shikfa-14] Share the database on several servers.

~ Aim of **P**rivate Information **R**etrieval protocols [Augot,Levy-dit-Vehel,Shikfa-14] Share the database on several servers.

Restricting a word of $C_{\eta}(\delta_T, \delta_X)$ along an η -line gives a word of a $PRS(\delta)$.

Restricting a word of $C_{\eta}(\delta_T, \delta_X)$ along an η -line gives a word of a $PRS(\delta)$.

Wanted datum: c_{P_0} with $c \in C_{\eta}(\delta_T, \delta_X)$ and $\delta < q - 2$.

Randomly pick an η -line L containing P_0 .

Restricting a word of $C_{\eta}(\delta_T, \delta_X)$ along an η -line gives a word of a $PRS(\delta)$.

Wanted datum: c_{P_0} with $c \in C_{\eta}(\delta_T, \delta_X)$ and $\delta < q - 2$.

Randomly pick an η -line L containing P_0 . Server \leftrightarrow line not containing P_0 : ask for $c_{L_i \cap L}$

Restricting a word of $C_{\eta}(\delta_T, \delta_X)$ along an η -line gives a word of a $PRS(\delta)$.

Wanted datum: c_{P_0} with $c \in C_{\eta}(\delta_T, \delta_X)$ and $\delta < q - 2$.

Randomly pick an η -line L containing P_0 . Server \leftrightarrow line not containing P_0 : ask for $c_{L_i \cap L}$ Server \leftrightarrow line containing P_0 : ask for c_{P_1} for P_1 random on this line

Restricting a word of $C_{\eta}(\delta_T, \delta_X)$ along an η -line gives a word of a $PRS(\delta)$.

Wanted datum: c_{P_0} with $c \in C_{\eta}(\delta_T, \delta_X)$ and $\delta < q - 2$.

Randomly pick an η -line L containing P_0 . Server \leftrightarrow line not containing P_0 : ask for $c_{L_i \cap L}$ Server \leftrightarrow line containing P_0 : ask for c_{P_1} for P_1 random on this line \Rightarrow Word of PRS(δ) with 1 error = easily correctable!

	PIR protocol ○○●	The end O
What's new?		

Why take $\eta>1\mathbf{?}$

	PIR protocol 00●	The end 0
What's new?		

Why take $\eta > 1$? What if servers communicate...?

	PIR protocol 00●	The end 0
What's new?		

Why take $\eta > 1$? What if servers communicate...? $\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers! $\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

	PIR protocol 00●	The end 0
What's new?		

Why take $\eta > 1$? What if servers communicate...? $\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers! $\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

... Counterpart...

	PIR protocol 00●	The end O
What's new?		

Why take $\eta > 1$? What if servers communicate...? $\eta = 1 \Rightarrow$ the protocol does not resist to colluding servers! $\eta > 1 \Rightarrow$ the protocol resists to the collusion of η servers!

... **Counterpart**... We want δ as near to q as possible and

$$\dim C_{\eta}(\delta_T, \delta_X) = (\delta_X + 1) \left(\frac{\delta}{\eta} - \eta \frac{\delta_X}{2} + 1 \right)$$

decreases as η grows \Rightarrow Loss of storage when η grows.

Can be fixed by lifting process (introduced by Guo, Kopparty, Sudan in 2013)...

Error-correcting codes on Hirzebruch surfaces	PIR protocol	The end
		•

More on ArXiv:

- About these codes: https://arxiv.org/abs/1801.08407
- About lift: https://arxiv.org/abs/1904.08696 (joint work with Julien Lavauzelle)

Thank you for your attention! Questions?