Handling a toric variety		

Explicit construction and parameters of projective toric codes

Jade Nardi

March 27, 2020

Ínría by teleworking

・ロト ・四ト ・ヨト ・ヨト

Context •			
Context			

Take a polytope $P \subset \mathbb{R}^N$ with integral vertices (= convex hull of integer points)

Classical toric codes introduced by Hansen: Evaluating monomials

$$x_1^{m_1}x_2^{m_2}\dots x_n^{m_N}$$
 at points $(x_1,\dots,x_N)\in (\mathbb{F}_q^*)^N$ where $m\in P\cap \mathbb{Z}^N$

→ Well-known parameters [Hansen, Little, Soprunov-Soprunova, Ruano].

Toric codes are algebraic-geometric codes:

P defines a *toric variety* \mathbf{X}_P and a *divisor* D.

Toric code = evaluating every $f \in L(D)$ at some of the rational points of \mathbf{X}_P .

周 ト イ ヨ ト イ ヨ ト

Context •			
Context			

Take a polytope $P \subset \mathbb{R}^N$ with **integral vertices** (= convex hull of integer points) *Classical* toric codes introduced by Hansen: Evaluating monomials $x_1^{m_1} x_2^{m_2} \dots x_n^{m_N}$ at points $(x_1, \dots, x_N) \in (\mathbb{F}_q^*)^N$ where $m \in P \cap \mathbb{Z}^N$. \rightarrow Well-known parameters [Hansen, Little, Soprunov-Soprunova, Ruano].

Toric codes are **algebraic-geometric codes**: P defines a *toric variety* \mathbf{X}_P and a *divisor* D. Toric code = evaluating every $f \in L(D)$ at **some** of the rational points of \mathbf{X}_P .

Aim: evaluating these fonctions on the **whole** variety. Similar to going from Reed-Muller codes to **projective** Reed-Muller codes Advantages:

 $\textcircled{\label{eq:length}$ length \nearrow , minimum distance \nearrow with roughly the same dimension.

② Strenghten the geometric interpretation

Main obstacle: Describe \mathbf{X}_P and its \mathbb{F}_q -points to make the evaluation meaningful and *workable*

⊕

P integral polytope of dimension $N \rightarrow$ toric variety \mathbf{X}_P of dimension NSeveral ways to describe \mathbf{X}_P : (under some assumptions)

- with *fans* as an abstract variety
- geometric properties
- ⊖ implementation

P integral polytope of dimension $N \rightarrow$ toric variety \mathbf{X}_P of dimension NSeveral ways to describe \mathbf{X}_P : (under some assumptions)

 \oplus

θ

- with *fans* as an abstract variety
- geometric properties
- ⊖ implementation
- embedded into $\mathbb{P}^{\# (P \cap \mathbb{Z}^N) 1}$
- practical description
- very large ambiant

P integral polytope of dimension $N \rightarrow$ toric variety \mathbf{X}_P of dimension NSeveral ways to describe \mathbf{X}_P : (under some assumptions)

- with fans as an abstract variety
- ⊕ geometric properties⊖ implementation
- embedded into $\mathbb{P}^{\# \left(P \cap \mathbb{Z}^N \right) 1}$

⊕ practical description⊖ very large ambiant

- as a quotient of a subset of \mathbb{A}^r (where $r = \mathsf{nb}$ of facets of P) by a group G
 - ⊕ more reasonable ambient
 - \oplus functions of L(D) = polynomials in r variables

Handling a toric variety Description of the toric variety \mathbf{X}_P associated to the polytope P

P integral polytope of dimension $N \rightarrow$ toric variety \mathbf{X}_P of dimension N Several ways to describe \mathbf{X}_{P} : (under some assumptions)

- with *fans* as an abstract variety
- embedded into $\mathbb{P}^{\# (P \cap \mathbb{Z}^N) 1} \oplus$ practical description

geometric properties ⊖ implementation

 \ominus very large ambiant

- as a quotient of a subset of \mathbb{A}^r (where $r = \mathsf{nb}$ of facets of P) by a group G
 - more reasonable ambient Æ
 - functions of L(D) = polynomials in r variables Ð

Example: $P = \text{Conv}((0,0), (1,0), (0,1), (1,1)) \subset \mathbb{R}^2$ gives $\mathbf{X}_P = \mathbb{P}^1 \times \mathbb{P}^1$:

- embedded in \mathbb{P}^3 by the Segre map: $(x_0, x_1, y_0, y_1) \mapsto (x_i y_j)$,
- defined as the quotient of $(\mathbb{A}^2 \setminus \{(0,0)\})^2 \subset \mathbb{A}^4$ by the group $(\overline{\mathbb{F}}^*)^2$ via the action

$$(\lambda,\mu)\cdot(x_0,x_1,y_0,y_1)=(\lambda x_0,\lambda x_1,\mu y_0,\mu y_1)$$

Functions= bihomogeneous polynomials

・ロト ・回 ト ・ヨト ・ヨト

	Handling a toric variety ○●				
F X	for classical toric codes, $y^m = X_1^{m_1} \dots X_N^{m_N}$.	an integral poir	It $m \in P \cap \mathbb{Z}^N$	gives a monomia	l
h	n the projective case, it	corresponds to	a monomial χ	$\langle m, P \rangle \in \mathbb{F}_{\mathbf{q}}[\mathbf{X}_1, \dots]$	$, \mathbf{X_r}].$
	- /	\rightarrow α $(1m)$	$P \setminus =$	-N	

$$L(D) = \operatorname{Span}\left(\chi^{\langle m, P \rangle} \mid m \in P \cap \mathbb{Z}^N\right)$$

We can go from χ^m to $\chi(m, P)$ via homogenization process.

- 4 同 ト - 4 同 ト

 $\begin{array}{c|c} \label{eq:context} & \mbox{Handling a toric variety} & \mbox{Piecewise toric} & \mbox{Dimension} & \mbox{Minimum distance} & \mbox{And, so what?} \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \\ \mbox{For classical toric codes, an integral point} & \mbox{$m \in P \cap \mathbb{Z}^N$ gives a monomial} \\ \chi^m = X_1^{m_1} \dots X_N^{m_N}. \\ \mbox{In the projective case, it corresponds to a monomial} & \chi^{(m,P)} \in \mathbb{F}_q[\mathbf{X_1},\dots,\mathbf{X_r}]. \end{array}$

$$L(D) = \operatorname{Span}\left(\chi^{(m,P)} \mid m \in P \cap \mathbb{Z}^N\right)$$

We can go from χ^m to $\chi(m, P)$ via homogenization process. Example on \mathbb{P}^2 :

- $\chi^m = x_1^0 x_2^1 = x_2.$
- $\chi^{\langle m, P \rangle} = X_2 \leftarrow$ homogenize in degree 1
- $\chi^{\langle m, 2P \rangle}$ = $X_0 X_2$ \leftarrow homogenize in degree 2

(ロ) (四) (三) (三)

$$\begin{array}{c|c} \hline \label{eq:context} & \mbox{Handling a toric variety} & \mbox{Piecewise toric} & \mbox{Dimension} & \mbox{Minimum distance} & \mbox{And, so what?} \\ \hline \mbox{o} & \mbo$$

$$L(D) = \operatorname{Span}\left(\chi^{\langle m, P \rangle} \mid m \in P \cap \mathbb{Z}^N\right)$$

We can go from χ^m to $\chi\langle m,P\rangle$ via homogenization process.

Example on \mathbb{P}^2 :

- $\chi^m = x_1^0 x_2^1 = x_2.$
- $\chi^{\langle m, P \rangle} = X_2 \leftarrow$ homogenize in degree 1
- $\chi^{\langle m, 2P \rangle} = X_0 X_2 \leftarrow$ homogenize in degree 2

Definition (Projective toric code)

Let P be a lattice polytope, (\mathbf{X}_P, D) its corresponding toric variety and divisor. Choose a set \mathcal{P} of representatives of $\mathbf{X}_P(\mathbb{F}_q)$. The *projective toric* code PC_P is defined as the image of

$$\mathsf{PC}_P = \operatorname{Span}\left\{\left(\chi^{\langle m,D\rangle}(\mathbf{x})\right)_{\mathbf{x}\in\mathcal{P}}\in\mathbb{F}_q^n,\ m\in P\cap\mathbb{Z}^N\right\}$$

where $n = \# \mathbf{X}_P(\mathbb{F}_q)$.

イロト イ団ト イヨト イヨト

The variety
$$X_P$$
 is the disjoint union of tori : $X_P = \bigcup_{Q \text{ faces of } P} \mathbb{T}_Q$
with $\mathbb{T}_Q = (\overline{\mathbb{F}_q}^*)^{\dim Q} \Rightarrow \#\mathbb{T}_Q(\mathbb{F}_q) = (q-1)^{\dim Q}$.
Examples
Weighted Projective Plane $\mathbb{P}(1, a, b)$
 $= (0, b)^{-1} = (0, b)^{-1} = (1, a, b)^{-1}$
 $= (0, b)^{-1} = (1, a, b)^{-1}$
 $= (1, a, b)^$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ● ●

The variety
$$\mathbb{X}_P$$
 is the disjoint union of tori : $\mathbb{X}_P = \bigcup_{Q \text{ faces of } P} \mathbb{T}_Q$
with $\mathbb{T}_Q = (\overline{\mathbb{F}_q}^*)^{\dim Q} \Rightarrow \#\mathbb{T}_Q(\mathbb{F}_q) = (q-1)^{\dim Q}$.
Examples
Weighted Projective Plane $\mathbb{P}(1, a, b)$
 $= (0, b)^{-1} = (0, b)^{-1} = (1, a, b)^$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ● ●

Number of \mathbb{F}_q -points of \mathbf{X}_P

$$#\mathbf{X}_{P}(\mathbb{F}_{q}) = (q-1)^{N} + \sum_{i=0}^{N-1} (\mathsf{nb} \text{ of } i\text{-dim faces}) \times (q-1)^{i}.$$

ヘロマ ヘ通マ ヘヨマ ヘヨマ

	Piecewise toric		
	0000		
Evaluation			

$$\mathbf{X}_P = \bigsqcup_{Q \text{ faces of } P} \mathbb{T}_Q$$

What does a codeword of PC_P look like when restricting on points of a torus \mathbb{T}_Q ?

Recall: Integral point $m \in P \cap \mathbb{Z}^N \Leftrightarrow$ Monomial $\chi^{(m,P)} \in L(D)$

Lemma

- If $m \in Q$, $\chi^{(m,P)}(\mathbf{x}) \neq 0 \iff \mathbf{x} \in \mathbb{T}_Q$,
- For any face Q of P, the puncturing of the code PC_P at coordinates corresponding to points of outside T_Q is monomially equivalent to the classical toric code C_Q.

イロン イ団 と イヨン イヨン

Figure: Matrix of the evaluation map associated to a polygon P(N = 2)

Figure: Matrix of the evaluation map associated to a polygon P(N = 2)

Figure: Matrix of the evaluation map associated to a polygon P(N = 2)

Figure: Matrix of the evaluation map associated to a polygon P(N = 2)

For any polytope P, there is a *generator matrix* of PC_P with such a triangular block structure.

	Handling a toric variety	Piecewise toric		
		0000		
Dimension	and reduction module	a - 1		

Dimension of PC_P = rank of the previous matrix = $\sum_{Q} \dim C_{Q^\circ}$

Dimension of classical toric codes

For two elements $(u, v) \in (\mathbb{Z}^N)^2$, we write $u \sim v$ if $u - v \in (q - 1)\mathbb{Z}^N$.

Theorem [Ruano 07]

Let \overline{P} be a set of representatives of $P \cap \mathbb{Z}^N$ under ~. Then

•
$$\chi^m(\mathbf{t}) = \chi^{m'}(\mathbf{t})$$
 for every $\mathbf{t} \in (\mathbb{F}_q^*)^N \Leftrightarrow m \sim m'$,

•
$$\{(\chi^{\overline{m}}(\mathbf{t}), \mathbf{t} \in (\mathbb{F}_q^*)^N) \mid \overline{m} \in \overline{P}\}$$
 is a basis of C_P .

イロン イ団 と イヨン イヨン

	t Handling a toric variety Piecewise toric Dimension OO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO			
		0000		
Dimension	and reduction module	a - 1		

Dimension of PC_{P} = rank of the previous matrix = $\sum_{\mathit{Q}} \dim \mathsf{C}_{\mathit{Q}^\circ}$

Dimension of classical toric codes

For two elements $(u, v) \in (\mathbb{Z}^N)^2$, we write $u \sim v$ if $u - v \in (q - 1)\mathbb{Z}^N$.

Theorem [Ruano 07]

Let \overline{P} be a set of representatives of $P \cap \mathbb{Z}^N$ under ~. Then

•
$$\chi^m(\mathbf{t}) = \chi^{m'}(\mathbf{t})$$
 for every $\mathbf{t} \in (\mathbb{F}_q^*)^N \Leftrightarrow m \sim m'$,

•
$$\left\{ (\chi^{\overline{m}}(\mathbf{t}), \mathbf{t} \in (\mathbb{F}_q^*)^N) \mid \overline{m} \in \overline{P} \right\}$$
 is a basis of C_P .

In the projective case, the polytope P is reduced modulo q-1 face by face. On $P \cap \mathbb{Z}^N$, we write $m \sim_P m'$ if there exists a face Q of P s.t. $m, m' \in Q^\circ$ and $m - m' \in (q-1)\mathbb{Z}^N$.

Theorem [N. 20]

Let $\operatorname{Red}(P)$ be a set of representatives of $P \cap \mathbb{Z}^N$ modulo \sim_P . Then

- ker ev_P = Span{ $\chi^m \chi^{m'} : m \sim_P m'$ },
- $\{\operatorname{ev}_P(\chi^{(\overline{m},P)} | \overline{m} \in \operatorname{Red}(P)\}\$ is a basis of PC_P .

	Handling a toric variety		Dimension	
			•	
Example o	of computation of the o	dimension of PC ₁	⇒ and C _P	

 \rightarrow Toric surface parametrized by the integer η called a *Hirzebruch surface* + a divisor of *bidegree* (a, b).

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \rightarrow Reduce the interior of each face modulo q - 1 = 6.

	Handling a toric variety		Dimension	
			•	
Example of	of computation of the	dimension of PC ₁	and Cp	

 \rightarrow Toric surface parametrized by the integer η called a *Hirzebruch surface* + a divisor of *bidegree* (a, b).

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \rightarrow Reduce the interior of each face modulo q - 1 = 6.

	Handling a toric variety		Dimension	
			•	
Example of	of computation of the	dimension of PC ₁	and Cp	

 \rightarrow Toric surface parametrized by the integer η called a *Hirzebruch surface* + a divisor of *bidegree* (a, b).

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \rightarrow Reduce the interior of each face modulo q - 1 = 6.

	Handling a toric variety		Dimension	
			•	
Example of	of computation of the	dimension of PC ₁	and Cp	

 \rightarrow Toric surface parametrized by the integer η called a *Hirzebruch surface* + a divisor of *bidegree* (a, b).

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \rightarrow Reduce the interior of each face modulo q - 1 = 6.

・ 同 ト ・ ヨ ト ・ ヨ ト

	Handling a toric variety		Dimension	
			•	
Example of	of computation of the	dimension of PC ₁	and Cp	

 \rightarrow Toric surface parametrized by the integer η called a *Hirzebruch surface* + a divisor of *bidegree* (a, b).

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \rightarrow Reduce the interior of each face modulo q - 1 = 6.

	Handling a toric variety		Dimension				
			•				
Example of computation of the dimension of PC _P and C _P							

 \rightarrow Toric surface parametrized by the integer η called a *Hirzebruch surface* + a divisor of *bidegree* (a, b).

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \rightarrow Reduce the interior of each face modulo q - 1 = 6.

	Handling a toric variety		Dimension				
			•				
Example of computation of the dimension of PC _P and C _P							

 \rightarrow Toric surface parametrized by the integer η called a *Hirzebruch surface* + a divisor of *bidegree* (a, b).

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \rightarrow Reduce the interior of each face modulo q - 1 = 6.

 $\dim \mathsf{PC}_P = \dim \mathsf{C}_P = \#P \cap \mathbb{Z}^2 = 12$

- Choose a *nice* total order < on Z^N (addition compatibility) : lexicographic
- **9** Find λ s.t. for every face Q of λP , #Red $(Q^\circ) = (q-1)^{\dim Q}$ (*i.e.* $\mathsf{PC}_{\lambda P} = \mathbb{F}_q^n$)
- Compute Red(P) and Red(λP) taking into account the order. Representative = smallest element wrt < among a class modulo ~(λ)P

< ロ > < 同 > < 三 > < 三 >

$$d(\mathsf{PC}_P) \ge \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$

- Choose a *nice* total order < on Z^N (addition compatibility) : lexicographic
- Find λ s.t. for every face Q of λP , $\# \operatorname{Red}(Q^\circ) = (q-1)^{\dim Q}$ (*i.e.* $\operatorname{PC}_{\lambda P} = \mathbb{F}_q^n$) $\lambda = 4$?
- Compute Red(P) and Red(λP) taking into account the order. Representative = smallest element wrt < among a class modulo ~_{(λ)P}

< ロ > < 同 > < 三 > < 三 >

$$d(\mathsf{PC}_P) \ge \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$

- Choose a *nice* total order < on Z^N (addition compatibility) : lexicographic
- Find λ s.t. for every face Q of λP , $\# \operatorname{Red}(Q^\circ) = (q-1)^{\dim Q}$ (*i.e.* $\operatorname{PC}_{\lambda P} = \mathbb{F}_q^n$) $\lambda = 4$?
- Compute Red(P) and Red(λP) taking into account the order. Representative = smallest element wrt < among a class modulo ~_{(λ)P}

< ロ > < 同 > < 三 > < 三 >

$$d(\mathsf{PC}_P) \ge \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$

- Choose a *nice* total order < on Z^N (addition compatibility) : lexicographic
- Find λ s.t. for every face Q of λP , $\# \operatorname{Red}(Q^\circ) = (q-1)^{\dim Q}$ (*i.e.* $\operatorname{PC}_{\lambda P} = \mathbb{F}_q^n$) $\lambda = 4$?
- Compute Red(P) and Red(λP) taking into account the order. Representative = smallest element wrt < among a class modulo ~_{(λ)P}

< ロ > < 同 > < 三 > < 三 >

$$d(\mathsf{PC}_P) \ge \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$

- Choose a *nice* total order < on Z^N (addition compatibility) : lexicographic
- Find λ s.t. for every face Q of λP , #Red $(Q^{\circ}) = (q-1)^{\dim Q}$ (*i.e.* PC $_{\lambda P} = \mathbb{F}_q^n$) $\lambda = 5$
- Compute Red(P) and Red(λP) taking into account the order. Representative = smallest element wrt < among a class modulo ~_{(λ)P}

< ロ > < 同 > < 三 > < 三 >

$$d(\mathsf{PC}_P) \ge \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$

- Choose a *nice* total order < on Z^N (addition compatibility) : lexicographic
- Find λ s.t. for every face Q of λP , #Red $(Q^{\circ}) = (q-1)^{\dim Q}$ (*i.e.* PC $_{\lambda P} = \mathbb{F}_q^n$) $\lambda = 5$
- Compute Red(P) and Red(λP) taking into account the order. Representative = smallest element wrt < among a class modulo ~_{(λ)P}

< ロ > < 同 > < 三 > < 三 >

$$d(\mathsf{PC}_P) \ge \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$

- Choose a *nice* total order < on Z^N (addition compatibility) : lexicographic
- Find λ s.t. for every face Q of λP , #Red $(Q^{\circ}) = (q-1)^{\dim Q}$ (*i.e.* PC $_{\lambda P} = \mathbb{F}_q^n$) $\lambda = 5$
- Compute Red(P) and Red(λP) taking into account the order. Representative = smallest element wrt < among a class modulo ~_{(λ)P}

< ロ > < 同 > < 三 > < 三 >

$$d(\mathsf{PC}_P) \ge \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$

- Choose a *nice* total order < on Z^N (addition compatibility) : lexicographic
- Find λ s.t. for every face Q of λP , #Red $(Q^{\circ}) = (q-1)^{\dim Q}$ (*i.e.* PC $_{\lambda P} = \mathbb{F}_q^n$) $\lambda = 5$
- Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order. Representative = smallest element wrt < among a class modulo $\sim_{(\lambda)P}$
 - $\rightarrow \mathsf{PC}_P$ has type [21,4,8]

Theorem [N. 20]

$$d(\mathsf{PC}_P) \ge \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$

 $P) \cap \operatorname{Red}(5P)$

= 8

			And, so what?
Conclusion			

Given a polytope P, we can

- compute exactly the dimension of the code PC_P,
- get a lowerbound on the minimum distance,

provided that we have a good algorithm to determine the integral points of a polytope.

 \ominus Lower on the minimum distance is not always sharp \ominus No complexity result

通 ト イ ヨ ト イ ヨ ト

			And, so what?
Conclusion			

Given a polytope P, we can

- compute exactly the dimension of the code PC_P,
- get a lowerbound on the minimum distance,

provided that we have a good algorithm to determine the integral points of a polytope.

 \ominus Lower on the minimum distance is not always sharp \ominus No complexity result

What now?

- Investigate properties of these codes (local decodability, dual codes)
- Application to secret sharing, generalizing one based on classical toric codes by Hansen

Thank you!

・ 同 ト ・ ヨ ト ・ ヨ ト