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Context

Take a polytope P ⊂ RN with integral vertices (= convex hull of integer points)

Classical toric codes introduced by Hansen: Evaluating monomials
xm1
1 xm2

2 . . . xmN
n at points (x1, . . . , xN) ∈ (F∗q)N where m ∈ P ∩ ZN .

→ Well-known parameters [Hansen, Little, Soprunov-Soprunova, Ruano].

Toric codes are algebraic-geometric codes:
P defines a toric variety XP and a divisor D.
Toric code = evaluating every f ∈ L(D) at some of the rational points of XP .

Aim: evaluating these fonctions on the whole variety.
Similar to going from Reed-Muller codes to projective Reed-Muller codes
Advantages:

1 length ↗, minimum distance ↗ with roughly the same dimension.

2 Strenghten the geometric interpretation

Main obstacle: Describe XP and its Fq-points to make the evaluation
meaningful and workable

Explicit construction and parameters of projective toric codes Jade Nardi



Context Handling a toric variety Piecewise toric Dimension Minimum distance And, so what?

Context

Take a polytope P ⊂ RN with integral vertices (= convex hull of integer points)

Classical toric codes introduced by Hansen: Evaluating monomials
xm1
1 xm2

2 . . . xmN
n at points (x1, . . . , xN) ∈ (F∗q)N where m ∈ P ∩ ZN .

→ Well-known parameters [Hansen, Little, Soprunov-Soprunova, Ruano].

Toric codes are algebraic-geometric codes:
P defines a toric variety XP and a divisor D.
Toric code = evaluating every f ∈ L(D) at some of the rational points of XP .

Aim: evaluating these fonctions on the whole variety.
Similar to going from Reed-Muller codes to projective Reed-Muller codes
Advantages:

1 length ↗, minimum distance ↗ with roughly the same dimension.

2 Strenghten the geometric interpretation

Main obstacle: Describe XP and its Fq-points to make the evaluation
meaningful and workable

Explicit construction and parameters of projective toric codes Jade Nardi



Context Handling a toric variety Piecewise toric Dimension Minimum distance And, so what?

Description of the toric variety XP associated to the polytope P

P integral polytope of dimension N → toric variety XP of dimension N
Several ways to describe XP : (under some assumptions)

● with fans as an abstract variety
⊕ geometric properties
⊖ implementation

● embedded into P#(P∩ZN )−1 ⊕ practical description
⊖ very large ambiant

● as a quotient of a subset of Ar (where r = nb of facets of P ) by a group G
⊕ more reasonable ambient
⊕ functions of L(D) = polynomials in r variables

Example: P = Conv((0,0), (1,0), (0,1), (1,1)) ⊂ R2 gives XP = P1 × P1 :

● embedded in P3 by the Segre map: (x0, x1, y0, y1)↦ (xiyj),

● defined as the quotient of (A2 ∖ {(0,0)})2 ⊂ A4 by the group (F̄∗)2 via
the action

(λ,µ) ⋅ (x0, x1, y0, y1) = (λx0, λx1, µy0, µy1)
Functions= bihomogeneous polynomials
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For classical toric codes, an integral point m ∈ P ∩ ZN gives a monomial
χm =Xm1

1 . . .XmN
N .

In the projective case, it corresponds to a monomial χ⟨m,P ⟩ ∈ Fq[X1, . . . ,Xr].

L(D) = Span (χ⟨m,P ⟩ ∣m ∈ P ∩ ZN)

We can go from χm to χ ⟨m,P ⟩ via homogenization process.

Example on P2:

P

m 2P

● χm = x01x12 = x2.

● χ⟨m,P ⟩ =X2 ← homogenize in degree 1

● χ⟨m,2P ⟩ =X0X2 ← homogenize in degree 2

Definition (Projective toric code)

Let P be a lattice polytope, (XP ,D) its corresponding toric variety and
divisor. Choose a set P of representatives of XP (Fq). The projective toric
code PCP is defined as the image of

PCP = Span{(χ⟨m,D⟩(x))
x∈P

∈ Fnq , m ∈ P ∩ ZN}

where n = #XP (Fq).

Explicit construction and parameters of projective toric codes Jade Nardi
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The variety XP is the disjoint union of tori : XP = ⊔
Q faces of P

TQ
with TQ = (Fq

∗)dimQ ⇒ #TQ(Fq) = (q − 1)dimQ.

Examples
Weighted Projective Plane P(1, a, b)

(a,0)

(0, b)

points
with ≠ 0
coord.

pts with
one 0

#P(1, a, b)(Fq) = (q−1)2

+3(q − 1)+3

A random toric 3-fold

#XP (Fq) =(q − 1)3 + 8(q − 1)2

+ 18(q − 1) + 12

Number of Fq-points of XP

#XP (Fq) = (q − 1)N +
N−1
∑
i=0

(nb of i-dim faces) × (q − 1)i.
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Evaluation

XP = ⊔
Q faces of P

TQ

What does a codeword of PCP look like when restricting on points of a torus
TQ?

Recall: Integral point m ∈ P ∩ ZN ↔ Monomial χ⟨m,P ⟩ ∈ L(D)

Lemma

● If m ∈ Q, χ⟨m,P ⟩(x) ≠ 0 ⇔ x ∈ TQ,

● For any face Q of P , the puncturing of the code PCP at coordinates
corresponding to points of outside TQ is monomially equivalent to the
classical toric code CQ.

Explicit construction and parameters of projective toric codes Jade Nardi
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For a face Q of P , puncturing of PCP outside TQ ≃ CQ.

(q − 1)2 torus points

r edges

q − 1
points ... ...

r
vertices

Q○ = interior of the face Q

m ∈ P ○

m ∈ F ○
1

m ∈ F ○
2

⋮

m ∈ F ○
r

vertices of P

G (CP ○)

G (CF ○
1
)

G (CF ○
2
)

. . .

G (CF ○r )
∗ ⋅ ⋅ ⋅ ∗ ∗ ⋅ ⋅ ⋅ ∗
∗ ⋅ ⋅ ⋅ ∗ ∗ ⋅ ⋅ ⋅ ∗

∗ ⋅ ⋅ ⋅ ∗∗ ⋅ ⋅ ⋅ ∗

1
1

⋱

1

Figure: Matrix of the evaluation map associated to a polygon P (N = 2)

For any polytope P , there is a generator matrix of PCP with such a triangular
block structure.

Explicit construction and parameters of projective toric codes Jade Nardi



Context Handling a toric variety Piecewise toric Dimension Minimum distance And, so what?

For a face Q of P , puncturing of PCP outside TQ ≃ CQ.

(q − 1)2 torus points

r edges

q − 1
points ... ...

r
vertices

Q○ = interior of the face Q

m ∈ P ○

m ∈ F ○
1

m ∈ F ○
2

⋮

m ∈ F ○
r

vertices of P

G (CP ○)

G (CF ○
1
)

G (CF ○
2
)

. . .

G (CF ○r )
∗ ⋅ ⋅ ⋅ ∗ ∗ ⋅ ⋅ ⋅ ∗
∗ ⋅ ⋅ ⋅ ∗ ∗ ⋅ ⋅ ⋅ ∗

∗ ⋅ ⋅ ⋅ ∗∗ ⋅ ⋅ ⋅ ∗

1
1

⋱

1

Figure: Matrix of the evaluation map associated to a polygon P (N = 2)

For any polytope P , there is a generator matrix of PCP with such a triangular
block structure.

Explicit construction and parameters of projective toric codes Jade Nardi



Context Handling a toric variety Piecewise toric Dimension Minimum distance And, so what?

For a face Q of P , puncturing of PCP outside TQ ≃ CQ.

(q − 1)2 torus points

r edges

q − 1
points ... ...

r
vertices

Q○ = interior of the face Q

m ∈ P ○

m ∈ F ○
1

m ∈ F ○
2

⋮

m ∈ F ○
r

vertices of P

G (CP ○)

G (CF ○
1
)

G (CF ○
2
)

. . .

G (CF ○r )
∗ ⋅ ⋅ ⋅ ∗ ∗ ⋅ ⋅ ⋅ ∗
∗ ⋅ ⋅ ⋅ ∗ ∗ ⋅ ⋅ ⋅ ∗

∗ ⋅ ⋅ ⋅ ∗∗ ⋅ ⋅ ⋅ ∗

1
1

⋱

1

Figure: Matrix of the evaluation map associated to a polygon P (N = 2)

For any polytope P , there is a generator matrix of PCP with such a triangular
block structure.

Explicit construction and parameters of projective toric codes Jade Nardi



Context Handling a toric variety Piecewise toric Dimension Minimum distance And, so what?

For a face Q of P , puncturing of PCP outside TQ ≃ CQ.

(q − 1)2 torus points

r edges

q − 1
points ... ...

r
vertices

Q○ = interior of the face Q

m ∈ P ○

m ∈ F ○
1

m ∈ F ○
2

⋮

m ∈ F ○
r

vertices of P

G (CP ○)

G (CF ○
1
)

G (CF ○
2
)

. . .

G (CF ○r )
∗ ⋅ ⋅ ⋅ ∗ ∗ ⋅ ⋅ ⋅ ∗
∗ ⋅ ⋅ ⋅ ∗ ∗ ⋅ ⋅ ⋅ ∗

∗ ⋅ ⋅ ⋅ ∗∗ ⋅ ⋅ ⋅ ∗

1
1

⋱

1

Figure: Matrix of the evaluation map associated to a polygon P (N = 2)

For any polytope P , there is a generator matrix of PCP with such a triangular
block structure.

Explicit construction and parameters of projective toric codes Jade Nardi



Context Handling a toric variety Piecewise toric Dimension Minimum distance And, so what?

Dimension and reduction modulo q − 1

Dimension of PCP = rank of the previous matrix
=∑
Q

dim CQ○

Dimension of classical toric codes
For two elements (u, v) ∈ (ZN)2, we write u ∼ v if u − v ∈ (q − 1)ZN .

Theorem [Ruano 07]

Let P be a set of representatives of P ∩ ZN under ∼. Then

● χm(t) = χm
′

(t) for every t ∈ (F∗q)N ⇔ m ∼m′,

● {(χm(t), t ∈ (F∗q)N) ∣m ∈ P} is a basis of CP .

In the projective case, the polytope P is reduced modulo q − 1 face by face.
On P ∩ ZN , we write m ∼P m′ if there exists a face Q of P s.t. m, m′ ∈ Q○

and m −m′ ∈ (q − 1)ZN .

Theorem [N. 20]

Let Red(P ) be a set of representatives of P ∩ ZN modulo ∼P . Then

● ker evP = Span{χm − χm
′

∶ m ∼P m′},

● {evP (χ⟨m,P ⟩) ∣m ∈ Red(P )} is a basis of PCP .

Explicit construction and parameters of projective toric codes Jade Nardi
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Example of computation of the dimension of PCP and CP

Let a, b, η ∈ N∗ and P = Conv((0,0), (a,0), (a, b), (0, b + ηa)).
→ Toric surface parametrized by the integer η called a Hirzebruch surface + a
divisor of bidegree (a, b).
Let us compare the dim PCP and dim CP on F7 for different (a, b).
→ Reduce the interior of each face modulo q − 1 = 6.

(a, b) = (3,5)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

dim PCP = 30 > dim CP = 24

(a, b) = (2,1)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

[0, q − 2]2

dim PCP = dim CP = #P ∩ Z2 = 12

Explicit construction and parameters of projective toric codes Jade Nardi
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→ Toric surface parametrized by the integer η called a Hirzebruch surface + a
divisor of bidegree (a, b).
Let us compare the dim PCP and dim CP on F7 for different (a, b).
→ Reduce the interior of each face modulo q − 1 = 6.

(a, b) = (3,5)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

dim PCP = 30 > dim CP = 24

(a, b) = (2,1)
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Lowerbound on the minimum distance on a toy example on F4

Secret ingredient: Gröbner basis of the vanishing ideal of XP (Fq)
1 Choose a nice total order < on ZN

(addition compatibility) :
lexicographic

2 Find λ s.t. for every face Q of λP ,
# Red(Q○) = (q − 1)dimQ

(i.e. PCλP = Fnq )

λ = 5

3 Compute Red(P ) and Red(λP )
taking into account the order.
Representative = smallest element
wrt < among a class modulo ∼(λ)P

→ PCP has type [21,4,8]

(0,0)
(1,0)

(−2,3)

q − 1 = 3 points
on each edges

(q − 1)2≠7
points inside

(m + 4P ) ∩ Red(5P ) = 8

Theorem [N. 20]

d(PCP ) ≥ min
m∈Red<(P )

# ((m + Psurj − P ) ∩Red<(Psurj)) .
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Conclusion

Given a polytope P , we can

● compute exactly the dimension of the code PCP ,

● get a lowerbound on the minimum distance,

provided that we have a good algorithm to determine the integral points of a
polytope.

⊖ Lower on the minimum distance is not always sharp
⊖ No complexity result

What now?

● Investigate properties of these codes (local decodability, dual codes)

● Application to secret sharing, generalizing one based on classical toric
codes by Hansen

Thank you!
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