Explicit construction and parameters of projective toric codes

Jade Nardi

March 27, 2020

Take a polytope $P \subset \mathbb{R}^{N}$ with integral vertices (= convex hull of integer points)
Classical toric codes introduced by Hansen: Evaluating monomials $x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{n}^{m_{N}}$ at points $\left(x_{1}, \ldots, x_{N}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{N}$ where $m \in P \cap \mathbb{Z}^{N}$.
\rightarrow Well-known parameters [Hansen, Little, Soprunov-Soprunova, Ruano].
Toric codes are algebraic-geometric codes:
P defines a toric variety \mathbf{X}_{P} and a divisor D.
Toric code $=$ evaluating every $f \in L(D)$ at some of the rational points of \mathbf{X}_{P}.

Take a polytope $P \subset \mathbb{R}^{N}$ with integral vertices (= convex hull of integer points)
Classical toric codes introduced by Hansen: Evaluating monomials
$x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{n}^{m_{N}}$ at points $\left(x_{1}, \ldots, x_{N}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{N}$ where $m \in P \cap \mathbb{Z}^{N}$.
\rightarrow Well-known parameters [Hansen, Little, Soprunov-Soprunova, Ruano].
Toric codes are algebraic-geometric codes:
P defines a toric variety \mathbf{X}_{P} and a divisor D.
Toric code $=$ evaluating every $f \in L(D)$ at some of the rational points of \mathbf{X}_{P}.

Aim: evaluating these fonctions on the whole variety.
Similar to going from Reed-Muller codes to projective Reed-Muller codes Advantages:
(1) length \nearrow, minimum distance \nearrow with roughly the same dimension.
(2) Strenghten the geometric interpretation

Main obstacle: Describe \mathbf{X}_{P} and its \mathbb{F}_{q}-points to make the evaluation meaningful and workable

Description of the toric variety \mathbf{X}_{P} associated to the polytope P

P integral polytope of dimension $N \rightarrow$ toric variety \mathbf{X}_{P} of dimension N Several ways to describe \mathbf{X}_{P} : (under some assumptions)

- with fans as an abstract variety
\oplus geometric properties
\ominus implementation

Description of the toric variety \mathbf{X}_{P} associated to the polytope P

P integral polytope of dimension $N \rightarrow$ toric variety \mathbf{X}_{P} of dimension N
Several ways to describe \mathbf{X}_{P} : (under some assumptions)

- with fans as an abstract variety
- embedded into $\mathbb{P}^{\#\left(P \cap \mathbb{Z}^{N}\right)-1}$
\oplus geometric properties
\ominus implementation
\oplus practical description \ominus very large ambiant

Description of the toric variety \mathbf{X}_{P} associated to the polytope P

P integral polytope of dimension $N \rightarrow$ toric variety \mathbf{X}_{P} of dimension N
Several ways to describe \mathbf{X}_{P} : (under some assumptions)

- with fans as an abstract variety
\oplus geometric properties
\ominus implementation
- embedded into $\mathbb{P}^{\#\left(P \cap \mathbb{Z}^{N}\right)-1 \quad \oplus \quad \text { practical description }}$ \ominus very large ambiant
- as a quotient of a subset of \mathbb{A}^{r} (where $r=\mathrm{nb}$ of facets of P) by a group G
\oplus more reasonable ambient
\oplus functions of $L(D)=$ polynomials in r variables

Description of the toric variety \mathbf{X}_{P} associated to the polytope P

P integral polytope of dimension $N \rightarrow$ toric variety \mathbf{X}_{P} of dimension N
Several ways to describe \mathbf{X}_{P} : (under some assumptions)

- with fans as an abstract variety
\oplus geometric properties
\ominus implementation
- embedded into $\mathbb{P}^{\#\left(P \cap \mathbb{Z}^{N}\right)-1} \quad \oplus \quad$ practical description
$\ominus \quad$ very large ambiant
- as a quotient of a subset of \mathbb{A}^{r} (where $r=\mathrm{nb}$ of facets of P) by a group G
\oplus more reasonable ambient
\oplus functions of $L(D)=$ polynomials in r variables

Example: $P=\operatorname{Conv}((0,0),(1,0),(0,1),(1,1)) \subset \mathbb{R}^{2}$ gives $\mathbf{X}_{P}=\mathbb{P}^{1} \times \mathbb{P}^{1}$:

- embedded in \mathbb{P}^{3} by the Segre map: $\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \mapsto\left(x_{i} y_{j}\right)$,
- defined as the quotient of $\left(\mathbb{A}^{2} \backslash\{(0,0)\}\right)^{2} \subset \mathbb{A}^{4}$ by the group $\left(\overline{\mathbb{F}}^{*}\right)^{2}$ via the action

$$
(\lambda, \mu) \cdot\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=\left(\lambda x_{0}, \lambda x_{1}, \mu y_{0}, \mu y_{1}\right)
$$

Functions $=$ bihomogeneous polynomials

For classical toric codes, an integral point $m \in P \cap \mathbb{Z}^{N}$ gives a monomial $\chi^{m}=X_{1}^{m_{1}} \ldots X_{N}^{m_{N}}$.
In the projective case, it corresponds to a monomial $\chi^{\langle m, P\rangle} \in \mathbb{F}_{\mathbf{q}}\left[\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{r}}\right]$.

$$
L(D)=\operatorname{Span}\left(\chi^{\langle m, P\rangle} \mid m \in P \cap \mathbb{Z}^{N}\right)
$$

We can go from χ^{m} to $\chi\langle m, P\rangle$ via homogenization process.

For classical toric codes, an integral point $m \in P \cap \mathbb{Z}^{N}$ gives a monomial $\chi^{m}=X_{1}^{m_{1}} \ldots X_{N}^{m_{N}}$.
In the projective case, it corresponds to a monomial $\chi^{\langle m, P\rangle} \in \mathbb{F}_{\mathbf{q}}\left[\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{r}}\right]$.

$$
L(D)=\operatorname{Span}\left(\chi^{\langle m, P\rangle} \mid m \in P \cap \mathbb{Z}^{N}\right)
$$

We can go from χ^{m} to $\chi\langle m, P\rangle$ via homogenization process.

Example on \mathbb{P}^{2} :

- $\chi^{m}=x_{1}^{0} x_{2}^{1}=x_{2}$.
- $\chi^{\langle m, P\rangle}=X_{2} \leftarrow$ homogenize in degree 1
- $\chi^{\langle m, 2 P\rangle}=X_{0} X_{2} \leftarrow$ homogenize in degree 2

For classical toric codes, an integral point $m \in P \cap \mathbb{Z}^{N}$ gives a monomial $\chi^{m}=X_{1}^{m_{1}} \ldots X_{N}^{m_{N}}$.
In the projective case, it corresponds to a monomial $\chi^{\langle m, P\rangle} \in \mathbb{F}_{\mathbf{q}}\left[\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{r}}\right]$.

$$
L(D)=\operatorname{Span}\left(\chi^{\langle m, P\rangle} \mid m \in P \cap \mathbb{Z}^{N}\right)
$$

We can go from χ^{m} to $\chi\langle m, P\rangle$ via homogenization process. Example on \mathbb{P}^{2} :

- $\chi^{m}=x_{1}^{0} x_{2}^{1}=x_{2}$.
- $\chi^{\langle m, P\rangle}=X_{2} \leftarrow$ homogenize in degree 1
- $\chi^{\langle m, 2 P\rangle}=X_{0} X_{2} \leftarrow$ homogenize in degree 2

Definition (Projective toric code)

Let P be a lattice polytope, $\left(\mathbf{X}_{P}, D\right)$ its corresponding toric variety and divisor. Choose a set \mathcal{P} of representatives of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$. The projective toric code PC_{P} is defined as the image of

$$
\mathrm{PC}_{P}=\operatorname{Span}\left\{\left(\chi^{\langle m, D\rangle}(\mathbf{x})\right)_{\mathbf{x} \in \mathcal{P}} \in \mathbb{F}_{q}^{n}, m \in P \cap \mathbb{Z}^{N}\right\}
$$

where $n=\# \mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$.

The variety \mathbf{X}_{P} is the disjoint union of tori : $\mathbf{X}_{P}=$

with $\mathbb{T}_{Q}=\left(\overline{\mathbb{F}}_{q}{ }^{*}\right)^{\operatorname{dim} Q} \Rightarrow \# \mathbb{T}_{Q}\left(\mathbb{F}_{q}\right)=(q-1)^{\operatorname{dim} Q}$.

Examples

Weighted Projective Plane $\mathbb{P}(1, a, b)$

$\# \mathbb{P}(1, a, b)\left(\mathbb{F}_{q}\right)=(q-1)^{2}$

The variety \mathbf{X}_{P} is the disjoint union of tori: $\mathbf{X}_{P}=$ with $\mathbb{T}_{Q}=\left(\overline{\mathbb{F}_{q}}\right)^{\operatorname{dim} Q} \Rightarrow \# \mathbb{T}_{Q}\left(\mathbb{F}_{q}\right)=(q-1)^{\operatorname{dim} Q}$.

Examples

Weighted Projective Plane $\mathbb{P}(1, a, b)$

$\# \mathbb{P}(1, a, b)\left(\mathbb{F}_{q}\right)=(q-1)^{2}+3(q-1)$

The variety \mathbf{X}_{P} is the disjoint union of tori: $\mathbf{X}_{P}=$ with $\mathbb{T}_{Q}=\left({\overline{\mathbb{F}_{q}}}^{*}\right)^{\operatorname{dim} Q} \Rightarrow \# \mathbb{T}_{Q}\left(\mathbb{F}_{q}\right)=(q-1)^{\operatorname{dim} Q}$.

Examples

Weighted Projective Plane $\mathbb{P}(1, a, b)$

$\# \mathbb{P}(1, a, b)\left(\mathbb{F}_{q}\right)=(q-1)^{2}+3(q-1)+3$

The variety \mathbf{X}_{P} is the disjoint union of tori: $\mathbf{X}_{P}=$ with $\mathbb{T}_{Q}=\left({\overline{\mathbb{F}_{q}}}^{*}\right)^{\operatorname{dim} Q} \Rightarrow \# \mathbb{T}_{Q}\left(\mathbb{F}_{q}\right)=(q-1)^{\operatorname{dim} Q}$.

$\sqcup \mathbb{T}_{Q}$ Q faces of P

Examples

Weighted Projective Plane $\mathbb{P}(1, a, b)$

$\# \mathbb{P}(1, a, b)\left(\mathbb{F}_{q}\right)=(q-1)^{2}+3(q-1)+3$

A random toric 3 -fold

$$
\# \mathbf{X}_{P}\left(\mathbb{F}_{q}\right)=(q-1)^{3}+8(q-1)^{2}
$$

$$
+18(q-1)+12
$$

The variety \mathbf{X}_{P} is the disjoint union of tori : $\mathbf{X}_{P}=$ $\bigsqcup_{Q \text { faces of } P} \mathbb{T}_{Q}$ with $\mathbb{T}_{Q}=\left(\overline{\mathbb{F}_{q}}\right)^{\operatorname{dim} Q} \Rightarrow \# \mathbb{T}_{Q}\left(\mathbb{F}_{q}\right)=(q-1)^{\operatorname{dim} Q}$.

Examples

Weighted Projective Plane $\mathbb{P}(1, a, b)$

A random toric 3 -fold

$$
\begin{aligned}
\# \mathbf{X}_{P}\left(\mathbb{F}_{q}\right)= & (q-1)^{3}+8(q-1)^{2} \\
& +18(q-1)+12
\end{aligned}
$$

Number of \mathbb{F}_{q}-points of \mathbf{X}_{P}

$$
\# \mathbf{X}_{P}\left(\mathbb{F}_{q}\right)=(q-1)^{N}+\sum_{i=0}^{N-1}(\mathrm{nb} \text { of } i \text {-dim faces }) \times(q-1)^{i}
$$

$$
\mathbf{X}_{P}=\bigsqcup_{Q \text { faces of } P} \mathbb{T}_{Q}
$$

What does a codeword of PC_{P} look like when restricting on points of a torus \mathbb{T}_{Q} ?

Recall: Integral point $m \in P \cap \mathbb{Z}^{N} \leftrightarrow$ Monomial $\chi^{\langle m, P\rangle} \in L(D)$

Lemma

- If $m \in Q, \chi^{\langle m, P\rangle}(\mathbf{x}) \neq 0 \Leftrightarrow \mathbf{x} \in \mathbb{T}_{Q}$,
- For any face Q of P, the puncturing of the code PC_{P} at coordinates corresponding to points of outside \mathbb{T}_{Q} is monomially equivalent to the classical toric code C_{Q}.

For a face Q of P, puncturing of PC_{P} outside $\mathbb{T}_{Q} \simeq \mathrm{C}_{Q}$.

Figure: Matrix of the evaluation map associated to a polygon $P(N=2)$

For a face Q of P, puncturing of PC_{P} outside $\mathbb{T}_{Q} \simeq \mathrm{C}_{Q}$.

Figure: Matrix of the evaluation map associated to a polygon $P(N=2)$

For a face Q of P, puncturing of PC_{P} outside $\mathbb{T}_{Q} \simeq \mathrm{C}_{Q}$.

Figure: Matrix of the evaluation map associated to a polygon $P(N=2)$

For a face Q of P, puncturing of PC_{P} outside $\mathbb{T}_{Q} \simeq \mathrm{C}_{Q}$.

Figure: Matrix of the evaluation map associated to a polygon $P(N=2)$

For any polytope P, there is a generator matrix of PC_{P} with such a triangular block structure.

Dimension and reduction modulo $q-1$
Dimension of $\mathrm{PC}_{P}=$ rank of the previous matrix

$$
=\sum_{Q} \operatorname{dim} \mathrm{C}_{Q^{\circ}}
$$

Dimension of classical toric codes

For two elements $(u, v) \in\left(\mathbb{Z}^{N}\right)^{2}$, we write $u \sim v$ if $u-v \in(q-1) \mathbb{Z}^{N}$.

Theorem [Ruano 07]

Let \bar{P} be a set of representatives of $P \cap \mathbb{Z}^{N}$ under \sim. Then

- $\chi^{m}(\mathbf{t})=\chi^{m^{\prime}}(\mathbf{t})$ for every $\mathbf{t} \in\left(\mathbb{F}_{q}^{*}\right)^{N} \Leftrightarrow m \sim m^{\prime}$,
- $\left\{\left(\chi^{\bar{m}}(\mathbf{t}), \mathbf{t} \in\left(\mathbb{F}_{q}^{*}\right)^{N}\right) \mid \bar{m} \in \bar{P}\right\}$ is a basis of C_{P}.

Dimension and reduction modulo $q-1$

Dimension of $\mathrm{PC}_{P}=$ rank of the previous matrix

$$
=\sum_{Q} \operatorname{dim} \mathrm{C}_{Q^{\circ}}
$$

Dimension of classical toric codes

For two elements $(u, v) \in\left(\mathbb{Z}^{N}\right)^{2}$, we write $u \sim v$ if $u-v \in(q-1) \mathbb{Z}^{N}$.

Theorem [Ruano 07]

Let \bar{P} be a set of representatives of $P \cap \mathbb{Z}^{N}$ under \sim. Then

- $\chi^{m}(\mathbf{t})=\chi^{m^{\prime}}(\mathbf{t})$ for every $\mathbf{t} \in\left(\mathbb{F}_{q}^{*}\right)^{N} \Leftrightarrow m \sim m^{\prime}$,
- $\left\{\left(\chi^{\bar{m}}(\mathbf{t}), \mathbf{t} \in\left(\mathbb{F}_{q}^{*}\right)^{N}\right) \mid \bar{m} \in \bar{P}\right\}$ is a basis of C_{P}.

In the projective case, the polytope P is reduced modulo $q-1$ face by face. On $P \cap \mathbb{Z}^{N}$, we write $m \sim_{P} m^{\prime}$ if there exists a face Q of P s.t. $m, m^{\prime} \in Q^{\circ}$ and $m-m^{\prime} \in(q-1) \mathbb{Z}^{N}$.

Theorem [N .20]

Let $\operatorname{Red}(P)$ be a set of representatives of $P \cap \mathbb{Z}^{N}$ modulo \sim_{P}. Then

- $\operatorname{kerev}_{P}=\operatorname{Span}\left\{\chi^{m}-\chi^{m^{\prime}}: m \sim_{P} m^{\prime}\right\}$,
- $\left\{\operatorname{ev}_{P}\left(\chi^{\langle\bar{m}, P\rangle)} \mid \bar{m} \in \operatorname{Red}(P)\right\}\right.$ is a basis of PC_{P}.

Example of computation of the dimension of PC_{P} and C_{P}

Let $a, b, \eta \in \mathbb{N}^{*}$ and $P=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
\rightarrow Toric surface parametrized by the integer η called a Hirzebruch surface +a divisor of bidegree (a, b).
Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).
\rightarrow Reduce the interior of each face modulo $q-1=6$.

$$
(a, b)=(3,5)
$$

$$
\begin{aligned}
& (a, b)=(2,1) \\
& (0, b+\eta a) \\
& (0,0) \\
& (a, b) \\
& (a, 0)
\end{aligned}
$$

Example of computation of the dimension of PC_{P} and C_{P}

Let $a, b, \eta \in \mathbb{N}^{*}$ and $P=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
\rightarrow Toric surface parametrized by the integer η called a Hirzebruch surface +a divisor of bidegree (a, b).
Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).
\rightarrow Reduce the interior of each face modulo $q-1=6$.

$$
(a, b)=(3,5)
$$

Example of computation of the dimension of PC_{P} and C_{P}

Let $a, b, \eta \in \mathbb{N}^{*}$ and $P=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
\rightarrow Toric surface parametrized by the integer η called a Hirzebruch surface +a divisor of bidegree (a, b).
Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).
\rightarrow Reduce the interior of each face modulo $q-1=6$.

$$
(a, b)=(3,5)
$$

$(a, b)=(2,1)$
$(0, b+\eta a)$

Example of computation of the dimension of PC_{P} and C_{P}

Let $a, b, \eta \in \mathbb{N}^{*}$ and $P=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
\rightarrow Toric surface parametrized by the integer η called a Hirzebruch surface +a divisor of bidegree (a, b).
Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).
\rightarrow Reduce the interior of each face modulo $q-1=6$.

$$
(a, b)=(3,5)
$$

$(a, b)=(2,1)$
$(0, b+\eta a)$

$\operatorname{dim} \mathrm{PC}_{P}=30$

Example of computation of the dimension of PC_{P} and C_{P}

Let $a, b, \eta \in \mathbb{N}^{*}$ and $P=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
\rightarrow Toric surface parametrized by the integer η called a Hirzebruch surface +a divisor of bidegree (a, b).
Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).
\rightarrow Reduce the interior of each face modulo $q-1=6$.

$$
(a, b)=(3,5)
$$

$(a, b)=(2,1)$
$(0, b+\eta a)$

$\operatorname{dim} \mathrm{PC}_{P}=30>\operatorname{dim} \mathrm{C}_{P}=24$

Example of computation of the dimension of PC_{P} and C_{P}

Let $a, b, \eta \in \mathbb{N}^{*}$ and $P=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
\rightarrow Toric surface parametrized by the integer η called a Hirzebruch surface +a divisor of bidegree (a, b).
Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).
\rightarrow Reduce the interior of each face modulo $q-1=6$.

$$
(a, b)=(3,5)
$$

$(0, b+\eta a)$
$[0, \bar{q}-2]^{2}$

$\operatorname{dim} \mathrm{PC}_{P}=30>\operatorname{dim} \mathrm{C}_{P}=24$

Example of computation of the dimension of PC_{P} and C_{P}

Let $a, b, \eta \in \mathbb{N}^{*}$ and $P=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
\rightarrow Toric surface parametrized by the integer η called a Hirzebruch surface +a divisor of bidegree (a, b).
Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).
\rightarrow Reduce the interior of each face modulo $q-1=6$.

$$
(a, b)=(3,5)
$$

$\operatorname{dim} \mathrm{PC}_{P}=\operatorname{dim} \mathrm{C}_{P}=\# P \cap \mathbb{Z}^{2}=12$
$\operatorname{dim} \mathrm{PC}_{P}=30>\operatorname{dim} \mathrm{C}_{P}=24$

SEcret ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$
(1) Choose a nice total order $<$ on \mathbb{Z}^{N} (addition compatibility) :
lexicographic
(2) Find λ s.t. for every face Q of λP,
$\# \operatorname{Red}\left(Q^{\circ}\right)=(q-1)^{\operatorname{dim} Q}$
(i.e. $\mathrm{PC}_{\lambda P}=\mathbb{F}_{q}^{n}$)
(3) Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order.
Representative $=$ smallest element wrt < among a class modulo $\sim(\lambda) P$

Theorem [N. 20]

$$
d\left(\mathrm{PC}_{P}\right) \geq \min _{m \in \operatorname{Red}_{<}(P)} \#\left(\left(m+P_{\text {surj }}-P\right) \cap \operatorname{Red}_{<}\left(P_{\text {surj }}\right)\right) .
$$

Lowerbound on the minimum distance on a toy example on \mathbb{F}_{4}
SEcret ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$
(1) Choose a nice total order $<$ on \mathbb{Z}^{N} (addition compatibility) :
lexicographic
(2) Find λ s.t. for every face Q of λP,
$\# \operatorname{Red}\left(Q^{\circ}\right)=(q-1)^{\operatorname{dim} Q}$
(i.e. $\mathrm{PC}_{\lambda P}=\mathbb{F}_{q}^{n}$)
$\lambda=4$?
(3) Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order. Representative $=$ smallest element wrt < among a class modulo $\sim(\lambda) P$

Theorem [N. 20]

$$
d\left(\mathrm{PC}_{P}\right) \geq \min _{m \in \operatorname{Red}_{<}(P)} \#\left(\left(m+P_{\text {surj }}-P\right) \cap \operatorname{Red}_{<}\left(P_{\text {surj }}\right)\right) .
$$

Lowerbound on the minimum distance on a toy example on \mathbb{F}_{4}
SEcret ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$
(1) Choose a nice total order $<$ on \mathbb{Z}^{N} (addition compatibility) :
lexicographic
(2) Find λ s.t. for every face Q of λP, $\# \operatorname{Red}\left(Q^{\circ}\right)=(q-1)^{\operatorname{dim} Q}$
(i.e. $\mathrm{PC}_{\lambda P}=\mathbb{F}_{q}^{n}$)
$\lambda=4$?
(3) Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order. Representative $=$ smallest element wrt < among a class modulo $\sim(\lambda) P$

Theorem [N .20]

$$
d\left(\mathrm{PC}_{P}\right) \geq \min _{m \in \operatorname{Red}_{<}(P)} \#\left(\left(m+P_{\text {surj }}-P\right) \cap \operatorname{Red}_{<}\left(P_{\text {surj }}\right)\right) .
$$

Lowerbound on the minimum distance on a toy example on \mathbb{F}_{4}
SEcret ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$
(1) Choose a nice total order $<$ on \mathbb{Z}^{N} (addition compatibility) :
lexicographic
(2) Find λ s.t. for every face Q of λP, $\# \operatorname{Red}\left(Q^{\circ}\right)=(q-1)^{\operatorname{dim} Q}$
(i.e. $\mathrm{PC}_{\lambda P}=\mathbb{F}_{q}^{n}$)
$\lambda=4$?
(3) Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order. Representative $=$ smallest element wrt < among a class modulo $\sim(\lambda) P$

Theorem [N .20]

$$
d\left(\mathrm{PC}_{P}\right) \geq \min _{m \in \operatorname{Red}_{<}(P)} \#\left(\left(m+P_{\text {surj }}-P\right) \cap \operatorname{Red}_{<}\left(P_{\text {surj }}\right)\right) .
$$

Lowerbound on the minimum distance on a toy example on \mathbb{F}_{4}
SEcret ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$
(1) Choose a nice total order $<$ on \mathbb{Z}^{N} (addition compatibility) : lexicographic
(2) Find λ s.t. for every face Q of λP, $\# \operatorname{Red}\left(Q^{\circ}\right)=(q-1)^{\operatorname{dim} Q}$
(i.e. $\mathrm{PC}_{\lambda P}=\mathbb{F}_{q}^{n}$)
$\lambda=5$
(3) Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order. Representative $=$ smallest element wrt < among a class modulo $\sim(\lambda) P$

Theorem [N .20]

$$
d\left(\mathrm{PC}_{P}\right) \geq \min _{m \in \operatorname{Red}_{<}(P)} \#\left(\left(m+P_{\text {surj }}-P\right) \cap \operatorname{Red}_{<}\left(P_{\text {surj }}\right)\right) .
$$

Lowerbound on the minimum distance on a toy example on \mathbb{F}_{4}
SEcret ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$
(1) Choose a nice total order $<$ on \mathbb{Z}^{N} (addition compatibility) : lexicographic
(2) Find λ s.t. for every face Q of λP, $\# \operatorname{Red}\left(Q^{\circ}\right)=(q-1)^{\operatorname{dim} Q}$
(i.e. $\mathrm{PC}_{\lambda P}=\mathbb{F}_{q}^{n}$)
$\lambda=5$
(3) Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order. Representative $=$ smallest element wrt < among a class modulo $\sim(\lambda) P$

Theorem [N .20]

$$
d\left(\mathrm{PC}_{P}\right) \geq \min _{m \in \operatorname{Red}_{<}(P)} \#\left(\left(m+P_{\text {surj }}-P\right) \cap \operatorname{Red}_{<}\left(P_{\text {surj }}\right)\right) .
$$

Lowerbound on the minimum distance on a toy example on \mathbb{F}_{4}
SEcret ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$
(1) Choose a nice total order $<$ on \mathbb{Z}^{N} (addition compatibility) : lexicographic
(2) Find λ s.t. for every face Q of λP, $\# \operatorname{Red}\left(Q^{\circ}\right)=(q-1)^{\operatorname{dim} Q}$
(i.e. $\mathrm{PC}_{\lambda P}=\mathbb{F}_{q}^{n}$)
$\lambda=5$
(3) Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order. Representative $=$ smallest element wrt < among a class modulo $\sim(\lambda) P$

Theorem [N .20]

$$
d\left(\mathrm{PC}_{P}\right) \geq \min _{m \in \operatorname{Red}_{<}(P)} \#\left(\left(m+P_{\text {surj }}-P\right) \cap \operatorname{Red}_{<}\left(P_{\text {surj }}\right)\right) .
$$

Lowerbound on the minimum distance on a toy example on \mathbb{F}_{4}
SECRET INGREDIENT: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$
(1) Choose a nice total order $<$ on \mathbb{Z}^{N} (addition compatibility) : lexicographic
(2) Find λ s.t. for every face Q of λP, $\# \operatorname{Red}\left(Q^{\circ}\right)=(q-1)^{\operatorname{dim} Q}$
(i.e. $\mathrm{PC}_{\lambda P}=\mathbb{F}_{q}^{n}$)
$\lambda=5$
(3) Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order. Representative $=$ smallest element wrt < among a class modulo $\sim(\lambda) P$ $\rightarrow \mathrm{PC}_{P}$ has type $[21,4,8]$

Theorem [N .20]

$$
d\left(\mathrm{PC}_{P}\right) \geq \min _{m \in \operatorname{Red}_{<}(P)} \#\left(\left(m+P_{\text {surj }}-P\right) \cap \operatorname{Red}_{<}\left(P_{\text {surj }}\right)\right)
$$

Given a polytope P, we can

- compute exactly the dimension of the code PC_{P},
- get a lowerbound on the minimum distance, provided that we have a good algorithm to determine the integral points of a polytope.
\ominus Lower on the minimum distance is not always sharp
\ominus No complexity result

Given a polytope P, we can

- compute exactly the dimension of the code PC_{P},
- get a lowerbound on the minimum distance, provided that we have a good algorithm to determine the integral points of a polytope.
\ominus Lower on the minimum distance is not always sharp
\ominus No complexity result

What now?

- Investigate properties of these codes (local decodability, dual codes)
- Application to secret sharing, generalizing one based on classical toric codes by Hansen

Thank you!

