Length		Bibliography

Explicit construction and parameters of projective toric codes

Jade Nardi

JC2 November, 2020

https://arxiv.org/abs/2003.10357

(nnía_

.

 Introduction
 Length
 Dimension
 Example
 And, so what?
 Bibliography

 •0
 0
 0
 0
 0
 0

Classical toric code: Span of the evaluation on $(\mathbb{F}_q^*)^2$ of monomials

Projective toric code: Span of the evaluation of monomials on rational points of the whole variety

 $\begin{array}{c} (a,b,1) \ (a,1,0) \ (1,0,0) \\ (a,b) \in \mathbb{F}_q^2 \end{array} \begin{array}{c} (1,a,1,b) \ (0,1,1,b) \\ (1,a,0,1) \ (0,1,0,1) \end{array}$

 Introduction
 Length
 Dimension
 Example
 And, so what?
 Bibliography

 •0
 0
 000
 0
 0
 0

 Example of classical/Projective toric code
 Example
 And, so what?
 Bibliography

Classical toric code: Span of the evaluation on $(\mathbb{F}_q^*)^2$ of monomials

Projective toric code: Span of the evaluation of monomials on rational points of the *whole* variety (1, a, 1, b) (0, 1, 1, b)

(a, b, 1) (a, 1, 0) (1, 0, 0) $(a, b) \in \mathbb{F}_q^2$ Polygon \leftrightarrow variety & degree

Image: A math a math

Introduction 00 Classical/Projective toric codes An integral polytope $P \subset \mathbb{R}^N$ (vertices in \mathbb{Z}^N) defines an abstract toric variety \mathbf{X}_P with a divisor D and a monomial basis of L(D) (set of polynomials of a certain *degree*). Size of $P \leftrightarrow \text{Degree}$ in L(D) $\mathbb{D}^1 \setminus \mathbb{P}^1$ $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ Degree (1,2)Degree 2 Degree (4, 3, 3)Why toric? X_P contains a dense torus $\mathbb{T}_P \simeq \left(\overline{\mathbb{F}_q}^*\right)^N$ whose rational points are $(\mathbb{F}_q^*)^N$. Classical toric code: $C_P = \{(f(t))_{t \in \mathbb{T}_P}(\mathbb{F}_q) \mid f \in L(D)\}$ Hansen [Han02], Little-Schwarz [LS05], Ruano [Rua07], Soprunov-Soprunova [SS09] Aim : Constructing and studying the projective toric code

 $\mathsf{PC}_P = \left\{ (f(\mathbf{x}))_{\mathbf{x} \in \mathbf{X}_P(\mathbb{F}_q)} \mid f \in L(D) \right\}$

Advantages similar to $RM \rightarrow PRM$:

 \bullet length \nearrow , minimum distance \nearrow with roughly the same dimension.

Strenghten the geometric interpretation

	Length •				
The	variety \mathbf{X}_P is the disjoir	nt union of tori : \mathbf{X}_P	$= \bigsqcup_{Q \text{ faces of } P} \mathbb{T}_Q \text{ with}$	$\mathbb{T}_Q = (\overline{\mathbb{F}_q}^*)^{\dim Q}$ $\Rightarrow \# \mathbb{T}_Q(\mathbb{F}_q) = (q)$	$(-1)^{\dim Q}$.
Nun	nber of \mathbb{F}_q -points of $\mathbf X$	P			
	$\# \mathbf{X}_P$	$\left(\mathbb{F}_{q}\right) = \left(q-1\right)^{N} + \sum_{i=0}^{N-1}$	(nb of <i>i</i> -dim faces)	$\times (q-1)^i$.	
	Projective Pla points with $\neq 0$ coord. $\#\mathbb{P}^2(\mathbb{F}_q) = (q-1)^2$	\mathbb{P}^2			

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 → のへで

$$\frac{\log p}{\log Q} = \frac{\log p}{\log Q} = \frac{\log p}{\log Q} = \frac{\log p}{\log Q} = \frac{\log q}{\log Q} =$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 → のへで

$$\frac{\log h}{OO} = \frac{\log h}{OO} = \frac{\log$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

		Dimension •00		
Dimension of clas	sical toric code			

"Recall": The integral points of P give a monomial basis of C_P and PC_P .

Integral point
$$m \in P \cap \mathbb{Z}^N \Leftrightarrow \operatorname{ev}\left(\chi^{(m,P)}\right) \in \mathsf{C}_P/\mathsf{P}\mathsf{C}_P$$

CLASSICAL CASE: on \mathbb{F}_q^* , $x^{q-1} = 1$. For two elements $(u, v) \in (\mathbb{Z}^N)^2$, we write $u \sim v$ if $u - v \in (q-1)\mathbb{Z}^N$.

Theorem [Ruano 07]

•
$$\chi^{(m,P)}(\mathbf{t}) = \chi^{(m',P)}(\mathbf{t})$$
 for every $\mathbf{t} \in \mathbb{T}_P(\mathbb{F}_q) \Leftrightarrow m \sim m'$,

• If \overline{P} is a set of representatives of $P \cap \mathbb{Z}^N$ modulo ~, then $\{(\chi^{\langle \overline{m}, P \rangle}(\mathbf{t}), \mathbf{t} \in \mathbb{T}_P(\mathbb{F}_q) \mid \overline{m} \in \overline{P}\}$ is a basis of C_P .

Not so nice when homogenizing! On $\mathbb{P}^1(\mathbb{F}_q)$, $X_0^q \neq X_0 X_1^{q-1}$ at [1:0].

イロト イポト イヨト イヨト

		Dimension ○○●		
Dimension and red	luction modulo q -	- 1		

Dimension of PC_P = rank of the previous matrix = $\sum_Q \dim C_{Q^\circ}$

PROJECTIVE CASE: Reduction of P face by face.

On $P \cap \mathbb{Z}^N$, we write $m \sim_P m'$ if there exists a face Q of P s.t. $m, m' \in Q^\circ$ and $m - m' \in (q - 1)\mathbb{Z}^N$.

Theorem [N. 20]

- $\chi^{\langle m, P \rangle}(\mathbf{x}) = \chi^{\langle m', P \rangle}(\mathbf{x})$ for every $\mathbf{x} \in \mathbf{X}_P(\mathbb{F}_q) \Leftrightarrow m \sim_P m'$,
- If $\operatorname{Red}(P)$ is a set of representatives of $P \cap \mathbb{Z}^N$ modulo \sim_P , then $\left\{ \operatorname{ev}_P(\chi^{(\overline{m},P)} | \overline{m} \in \operatorname{Red}(P) \right\}$ is a basis of PC_P .

✓ Dimension of PC_P

	Length		Example	Bibliography
			•	
Example of com	outation of the dime	nsion of $PC_{\mathcal{D}}$ and $C_{\mathcal{D}}$		

Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0,b+\eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \vdash Reduce the interior of each face modulo q - 1 = 6.

3

イロト イヨト イヨト イヨト

	Length		Example	Bibliography
			•	
Example of com	outation of the dime	nsion of $PC_{\mathcal{D}}$ and $C_{\mathcal{D}}$		

Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \vdash Reduce the interior of each face modulo q - 1 = 6.

イロト イヨト イヨト イヨト

	Length		Example		Bibliography					
			•							
Example of com	Example of computation of the dimension of $PC_{\mathcal{P}}$ and $C_{\mathcal{P}}$									

Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \vdash Reduce the interior of each face modulo q - 1 = 6.

イロト イヨト イヨト イヨト

	Length		Example	Bibliography
			•	
Example of comp	utation of the dime	nsion of PC_P and C_P		
1	$-N^* + D()$		$1 \rangle \langle 0 \rangle \rangle \rangle$	

Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0,b+\eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \vdash Reduce the interior of each face modulo q - 1 = 6.

.

	Length		Example		Bibliography				
			•						
Example of com	Example of computation of the dimension of PC_P and C_P								

Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \text{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(n)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a, b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \downarrow Reduce the interior of each face modulo q - 1 = 6.

	Length		Example	Bibliography
			•	
Example of com	putation of the dime	nsion of PC_P and C_P		

Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a, b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \vdash Reduce the interior of each face modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \vdash Reduce the interior of each face modulo q - 1 = 6.

		And, so what?	
Minimum distance			

Lower bound on the minimum distance of PC_P more technical [CN16, Nar19] Key ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_P(\mathbb{F}_q)$

In conclusion, this work provides a general framework for studying AG codes on toric varieties. Given a polytope P, we can

- compute exactly the dimension of the code PC_P,
- get a lowerbound on the minimum distance (not always sharp),

provided that we have a good algorithm to determine the integral points of a polytope (No complexity result).

		And, so what?	
Minimum distance			

Lower bound on the minimum distance of PC_P more technical [CN16, Nar19] Key ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_P(\mathbb{F}_q)$

In conclusion, this work provides a general framework for studying AG codes on toric varieties. Given a polytope P, we can

- compute exactly the dimension of the code PC_P,
- get a lowerbound on the minimum distance (not always sharp),

provided that we have a good algorithm to determine the integral points of a polytope (No complexity result).

What now? Investigate properties of these codes

- Local decodability
- Dual codes for application to secret sharing [Han16]

Thank you!

00 0 0	000	0	0	•

Cicero Carvalho and Victor G. L. Neumann.

Projective Reed-Muller type codes on rational normal scrolls. *Finite Fields Appl.*, 37:85–107, 2016.

Johan P. Hansen.

Toric varieties Hirzebruch surfaces and error-correcting codes. Appl. Algebra Engrg. Comm. Comput., 13(4):289–300, 2002.

Johan P. Hansen.

Secret sharing schemes with strong multiplication and a large number of players from toric varieties. *Contemporary Mathematics*, 03 2016.

John Little and Ryan Schwarz.

On *m*-dimensional toric codes, 2005.

Jade Nardi.

Algebraic geometric codes on minimal hirzebruch surfaces. *Journal of Algebra*, 535:556 – 597, 2019.

Diego Ruano.

On the parameters of *r*-dimensional toric codes. *Finite Fields Appl.*, 13(4):962–976, 2007.

Ivan Soprunov and Jenya Soprunova.

Toric surface codes and Minkowski length of polygons. *SIAM J. Discrete Math.*, 23(1):384–400, 2008/09.