Explicit construction and parameters of projective toric codes

Jade Nardi

JC2
November, 2020
https://arxiv.org/abs/2003.10357
Gnzía

Classical toric code: Span of the evaluation on $\left(\mathbb{F}_{q}^{*}\right)^{2}$ of monomials

$$
\begin{array}{cc}
y^{2} & \\
y & x y \\
& x
\end{array}
$$

Homogenisation: choose variety \& degree

$$
\begin{array}{ll|l}
2 \text { on } \mathbb{P}^{2} & {[X, Y, Z]} & (1,2) \text { on } \mathbb{P}^{1} \times \mathbb{P}^{1}
\end{array} \quad\left[X_{0}, X_{1}, Y_{0}, Y_{1}\right]
$$

$$
\begin{array}{ccc}
Y^{2} & & \\
Y Z & X Y & \\
Z^{2} & X Z & X^{2}
\end{array}
$$

$$
\begin{array}{cc}
X_{0} Y_{1}^{2} & X_{1} Y_{1}^{2} \\
X_{0} Y_{0} Y_{1} & X_{1} Y_{0} Y_{1} \\
X_{0} Y_{0}^{2} & X_{1} Y_{0}^{2}
\end{array}
$$

Projective toric code: Span of the evaluation of monomials on rational points of the whole variety

$$
\begin{array}{ll}
(a, b, 1)(a, 1,0)(1,0,0) & (1, a, 1, b)(0,1,1, b) \\
(1, a, 0,1)(0,1,0,1)
\end{array}
$$

$$
(a, b) \in \mathbb{F}_{q}^{2}
$$

Classical toric code: Span of the evaluation on $\left(\mathbb{F}_{q}^{*}\right)^{2}$ of monomials

$$
\begin{array}{cc}
y^{2} & \\
y & x y \\
& x
\end{array}
$$

Homogenisation: choose variety \& degree

Projective toric code: Span of the evaluation of monomials on rational points of the whole variety

$$
\begin{gathered}
(a, b, 1)(a, 1,0)(1,0,0) \quad \begin{array}{l}
(1, a, 1, b)(0,1,1, b) \\
(a, b) \in \mathbb{F}_{q}^{2}
\end{array} \\
\text { Polygon } \leftrightarrow \text { variety \& degree }
\end{gathered}
$$

An integral polytope $P \subset \mathbb{R}^{N}$ (vertices in \mathbb{Z}^{N}) defines an abstract toric variety \mathbf{X}_{P} with a divisor D and a monomial basis of $L(D)$ (set of polynomials of a certain degree).

$$
\text { Size of } P \leftrightarrow \text { Degree in } L(D)
$$

$$
\mathbb{P}^{2}
$$

Degree 2

$$
\mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Degree (1, 2)

$$
\begin{gathered}
\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \\
\text { Degree }(4,3,3)
\end{gathered}
$$

Why toric?

X_{P} contains a dense torus $\mathbb{T}_{P} \simeq\left({\overline{\mathbb{F}_{q}}}^{*}\right)^{N}$ whose rational points are $\left(\mathbb{F}_{q}^{*}\right)^{N}$.
Classical toric code: $\mathrm{C}_{P}=\left\{(f(\mathbf{t}))_{\mathbf{t} \in \mathbb{T}_{P}\left(\mathbb{F}_{q}\right)} \mid f \in L(D)\right\}$ Hansen [Han02], Little-Schwarz [LS05], Ruano [Rua07], Soprunov-Soprunova [SS09]

Aim : Constructing and studying the projective toric code

$$
\mathrm{PC}_{P}=\left\{(f(\mathbf{x}))_{\mathbf{x} \in \mathbf{X}_{P}\left(\mathbb{F}_{q}\right)} \mid f \in L(D)\right\}
$$

Advantages similar to $\mathrm{RM} \rightarrow \mathrm{PRM}$:
(1) length \nearrow, minimum distance \nearrow with roughly the same dimension.
(2) Strenghten the geometric interpretation

The variety \mathbf{X}_{P} is the disjoint union of tori : $\mathbf{X}_{P}=\underset{Q \text { faces of } P}{\bigsqcup} \mathbb{T}_{Q}$ with $\mathbb{T}_{Q}=\left(\overline{\mathbb{F}}_{q}{ }^{*}\right)$ dim Q

$$
\Rightarrow \# \mathbb{T}_{Q}\left(\mathbb{F}_{q}\right)=(q-1)^{\operatorname{dim} Q}
$$

Number of \mathbb{F}_{q}-points of \mathbf{X}_{P}

$$
\# \mathbf{X}_{P}\left(\mathbb{F}_{q}\right)=(q-1)^{N}+\sum_{i=0}^{N-1}(\mathrm{nb} \text { of } i \text {-dim faces }) \times(q-1)^{i} .
$$

Projective Plane \mathbb{P}^{2}
points
with $\ddagger 0$
coord.

$$
\# \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)=(q-1)^{2}
$$

The variety \mathbf{X}_{P} is the disjoint union of tori : $\mathbf{X}_{P}=\underset{Q \text { faces of } P}{\bigsqcup} \mathbb{T}_{Q}$ with $\mathbb{T}_{Q}=\left(\overline{\mathbb{F}}_{q}{ }^{*}\right)$ dim Q

$$
\Rightarrow \# \mathbb{T}_{Q}\left(\mathbb{F}_{q}\right)=(q-1)^{\operatorname{dim} Q}
$$

Number of \mathbb{F}_{q}-points of \mathbf{X}_{P}

$$
\# \mathbf{X}_{P}\left(\mathbb{F}_{q}\right)=(q-1)^{N}+\sum_{i=0}^{N-1}(\mathrm{nb} \text { of } i \text {-dim faces }) \times(q-1)^{i} .
$$

Projective Plane \mathbb{P}^{2}

$$
\# \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+3(q-1)
$$

The variety \mathbf{X}_{P} is the disjoint union of tori : $\mathbf{X}_{P}=\underset{Q \text { faces of } P}{\bigsqcup} \mathbb{T}_{Q}$ with $\mathbb{T}_{Q}=\left(\overline{\mathbb{F}}_{q}{ }^{*}\right)$ dim Q

$$
\Rightarrow \# \mathbb{T}_{Q}\left(\mathbb{F}_{q}\right)=(q-1)^{\operatorname{dim} Q}
$$

Number of \mathbb{F}_{q}^{\prime}-points of \mathbf{X}_{P}

$$
\# \mathbf{X}_{P}\left(\mathbb{F}_{q}\right)=(q-1)^{N}+\sum_{i=0}^{N-1}(\mathrm{nb} \text { of } i \text {-dim faces }) \times(q-1)^{i} .
$$

Projective Plane \mathbb{P}^{2}

$$
\# \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+3(q-1)+3
$$

The variety \mathbf{X}_{P} is the disjoint union of tori : $\mathbf{X}_{P}=\underset{Q \text { faces of } P}{\bigsqcup} \mathbb{T}_{Q}$ with $\mathbb{T}_{Q}=\left(\overline{\mathbb{F}}_{q}{ }^{*}\right)$ dim Q

$$
\Rightarrow \# \mathbb{T}_{Q}\left(\mathbb{F}_{q}\right)=(q-1)^{\operatorname{dim} Q}
$$

Number of \mathbb{F}_{q}-points of \mathbf{X}_{P}

$$
\# \mathbf{X}_{P}\left(\mathbb{F}_{q}\right)=(q-1)^{N}+\sum_{i=0}^{N-1}(\mathrm{nb} \text { of } i \text {-dim faces }) \times(q-1)^{i} .
$$

Projective Plane \mathbb{P}^{2}

$$
\# \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+3(q-1)+3
$$

A random toric 3 -fold

dim	3	2	1	0
\# faces	1	8	18	12

$$
\begin{aligned}
\# \mathbf{X}_{P}\left(\mathbb{F}_{q}\right)= & (q-1)^{3}+8(q-1)^{2} \\
& +18(q-1)+12
\end{aligned}
$$

"Recall": The integral points of P give a monomial basis of C_{P} and PC_{P}.

$$
\text { Integral point } m \in P \cap \mathbb{Z}^{N} \leftrightarrow \mathrm{ev} \underbrace{\left(\chi^{\langle m, P\rangle}\right)}_{\text {monomial }} \in \mathrm{C}_{P} / \mathrm{PC}_{P}
$$

Classical case: on $\mathbb{F}_{q}^{*}, x^{q-1}=1$.
For two elements $(u, v) \in\left(\mathbb{Z}^{N}\right)^{2}$, we write $u \sim v$ if $u-v \in(q-1) \mathbb{Z}^{N}$.

Theorem [Ruano 07]

- $\chi^{\langle m, P\rangle}(\mathbf{t})=\chi^{\left\langle m^{\prime}, P\right\rangle}(\mathbf{t})$ for every $\mathbf{t} \in \mathbb{T}_{P}\left(\mathbb{F}_{q}\right) \Leftrightarrow m \sim m^{\prime}$,
- If \bar{P} is a set of representatives of $P \cap \mathbb{Z}^{N}$ modulo \sim, then $\left\{\left(\chi^{\langle\bar{m}, P\rangle}(\mathbf{t}), \mathbf{t} \in \mathbb{T}_{P}\left(\mathbb{F}_{q}\right) \mid \bar{m} \in \bar{P}\right\}\right.$ is a basis of C_{P}.

Not so nice when homogenizing! On $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right), X_{0}^{q} \neq X_{0} X_{1}^{q-1}$ at $[1: 0]$.

Figure: "Generator" matrix of PC_{P} when P is a polygon $(N=2)$

Figure: "Generator" matrix of PC_{P} when P is a polygon $(N=2)$

Figure: "Generator" matrix of PC_{P} when P is a polygon $(N=2)$

Figure: "Generator" matrix of PC_{P} when P is a polygon $(N=2)$
For any polytope P, there is a generator matrix of PC_{P} with such a triangular block structure. , Explicit construction of PC_{P}

Dimension of $\mathrm{PC}_{P}=$ rank of the previous matrix $=\sum_{Q} \operatorname{dim} \mathrm{C}_{Q}$ 。
Projective case: Reduction of P face by face.
On $P \cap \mathbb{Z}^{N}$, we write $m \sim_{P} m^{\prime}$ if there exists a face Q of P s.t. $m, m^{\prime} \in Q^{\circ}$ and $m-m^{\prime} \in(q-1) \mathbb{Z}^{N}$.

Theorem [N. 20]

- $\chi^{\langle m, P\rangle}(\mathbf{x})=\chi^{\left\langle m^{\prime}, P\right\rangle}(\mathbf{x})$ for every $\mathbf{x} \in \mathbf{X}_{P}\left(\mathbb{F}_{q}\right) \Leftrightarrow m \sim_{P} m^{\prime}$,
- If $\operatorname{Red}(P)$ is a set of representatives of $P \cap \mathbb{Z}^{N}$ modulo \sim_{P}, then $\left\{\operatorname{ev}_{P}\left(\chi^{\langle\bar{m}, P\rangle)} \mid \bar{m} \in \operatorname{Red}(P)\right\}\right.$ is a basis of PC_{P}.

Example of computation of the dimension of PC_{P} and C_{P}
Let $a, b, \eta \in \mathbb{N}^{*}$ and $P(\eta)=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
$\rightarrow \mathbf{X}_{P(\eta)}$ called a Hirzebruch surface + a divisor of bidegree (a, b).

$$
\begin{gathered}
\mathbf{X}_{P(\eta)}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+4(q-1)+4=(q+1)^{2} . \\
\upharpoonright \text { Reduce } \mathrm{P} \text { modulo } q-1=6 .
\end{gathered}
$$

Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).

$$
\rightarrow \text { Reduce the interior of each face modulo } q-1=6 \text {. }
$$

$$
(a, b)=(3,5)
$$

$$
(a, b)=(2,1)
$$

Example of computation of the dimension of PC_{P} and C_{P}
Let $a, b, \eta \in \mathbb{N}^{*}$ and $P(\eta)=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
$\rightarrow \mathbf{X}_{P(\eta)}$ called a Hirzebruch surface + a divisor of bidegree (a, b).

$$
\begin{gathered}
\mathbf{X}_{P(\eta)}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+4(q-1)+4=(q+1)^{2} . \\
\upharpoonright \text { Reduce } \mathrm{P} \text { modulo } q-1=6 .
\end{gathered}
$$

Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).

$$
\mapsto \text { Reduce the interior of each face modulo } q-1=6 \text {. }
$$

$$
(a, b)=(3,5)
$$

Example of computation of the dimension of PC_{P} and C_{F}
Let $a, b, \eta \in \mathbb{N}^{*}$ and $P(\eta)=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
$\rightarrow \mathbf{X}_{P(\eta)}$ called a Hirzebruch surface + a divisor of bidegree (a, b).

$$
\begin{gathered}
\mathbf{X}_{P(\eta)}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+4(q-1)+4=(q+1)^{2} . \\
>\text { Reduce P modulo } q-1=6 .
\end{gathered}
$$

Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).

$$
\mapsto \text { Reduce the interior of each face modulo } q-1=6 \text {. }
$$

$$
(a, b)=(3,5)
$$

$$
(a, b)=(2,1)
$$

Example of computation of the dimension of PC_{P} and C_{F}
Let $a, b, \eta \in \mathbb{N}^{*}$ and $P(\eta)=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
$\rightarrow \mathbf{X}_{P(\eta)}$ called a Hirzebruch surface + a divisor of bidegree (a, b).

$$
\begin{gathered}
\mathbf{X}_{P(\eta)}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+4(q-1)+4=(q+1)^{2} . \\
\text { 队 Reduce } \mathrm{P} \text { modulo } q-1=6 .
\end{gathered}
$$

Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).

$$
\checkmark \text { Reduce the interior of each face modulo } q-1=6 \text {. }
$$

$$
(a, b)=(3,5)
$$

Example of computation of the dimension of PC_{P} and C_{P}
Let $a, b, \eta \in \mathbb{N}^{*}$ and $P(\eta)=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
$\rightarrow \mathbf{X}_{P(\eta)}$ called a Hirzebruch surface + a divisor of bidegree (a, b).

$$
\begin{gathered}
\mathbf{X}_{P(\eta)}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+4(q-1)+4=(q+1)^{2} . \\
\upharpoonright \text { Reduce } \mathrm{P} \text { modulo } q-1=6 .
\end{gathered}
$$

Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).

$$
\mapsto \text { Reduce the interior of each face modulo } q-1=6 \text {. }
$$

$$
(a, b)=(3,5)
$$

Example of computation of the dimension of PC_{P} and C_{P}
Let $a, b, \eta \in \mathbb{N}^{*}$ and $P(\eta)=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
$\rightarrow \mathbf{X}_{P(\eta)}$ called a Hirzebruch surface + a divisor of bidegree (a, b).

$$
\begin{gathered}
\mathbf{X}_{P(\eta)}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+4(q-1)+4=(q+1)^{2} . \\
\upharpoonright \text { Reduce } \mathrm{P} \text { modulo } q-1=6 .
\end{gathered}
$$

Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).

$$
\mapsto \text { Reduce the interior of each face modulo } q-1=6 \text {. }
$$

$$
(a, b)=(3,5)
$$

Example of computation of the dimension of PC_{P} and C_{P}
Let $a, b, \eta \in \mathbb{N}^{*}$ and $P(\eta)=\operatorname{Conv}((0,0),(a, 0),(a, b),(0, b+\eta a))$.
$\rightarrow \mathbf{X}_{P(\eta)}$ called a Hirzebruch surface + a divisor of bidegree (a, b).

$$
\begin{gathered}
\mathbf{X}_{P(\eta)}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+4(q-1)+4=(q+1)^{2} . \\
\upharpoonright \text { Reduce } \mathrm{P} \text { modulo } q-1=6 .
\end{gathered}
$$

Let us compare the $\operatorname{dim} \mathrm{PC}_{P}$ and $\operatorname{dim} \mathrm{C}_{P}$ on \mathbb{F}_{7} for different (a, b).

$$
\mapsto \text { Reduce the interior of each face modulo } q-1=6 \text {. }
$$

$$
(a, b)=(3,5)
$$

$\operatorname{dim} \mathrm{PC}_{P}=\operatorname{dim} \mathrm{C}_{P}=\# P \cap \mathbb{Z}^{2}=12$

Lower bound on the minimum distance of PC_{P} more technical [CN16, Nar19]
Key ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$
In conclusion, this work provides a general framework for studying AG codes on toric varieties. Given a polytope P, we can

- compute exactly the dimension of the code PC_{P},
- get a lowerbound on the minimum distance (not always sharp),
provided that we have a good algorithm to determine the integral points of a polytope (No complexity result).

Lower bound on the minimum distance of PC_{P} more technical [CN16, Nar19]
Key ingredient: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}\left(\mathbb{F}_{q}\right)$
In conclusion, this work provides a general framework for studying AG codes on toric varieties. Given a polytope P, we can

- compute exactly the dimension of the code PC_{P},
- get a lowerbound on the minimum distance (not always sharp),
provided that we have a good algorithm to determine the integral points of a polytope (No complexity result).

What now? Investigate properties of these codes

- Local decodability
- Dual codes for application to secret sharing [Han16]

Thank you!

Cicero Carvalho and Victor G. L. Neumann.
Projective Reed-Muller type codes on rational normal scrolls.
Finite Fields Appl., 37:85-107, 2016.

Johan P. Hansen.
Toric varieties Hirzebruch surfaces and error-correcting codes.
Appl. Algebra Engrg. Comm. Comput., 13(4):289-300, 2002.Johan P. Hansen.
Secret sharing schemes with strong multiplication and a large number of players from toric varieties.
Contemporary Mathematics, 032016.

John Little and Ryan Schwarz.
On m-dimensional toric codes, 2005.
Jade Nardi.
Algebraic geometric codes on minimal hirzebruch surfaces.
Journal of Algebra, 535:556 - 597, 2019.
Diego Ruano.
On the parameters of r-dimensional toric codes.
Finite Fields Appl., 13(4):962-976, 2007.
Ivan Soprunov and Jenya Soprunova.
Toric surface codes and Minkowski length of polygons.
SIAM J. Discrete Math., 23(1):384-400, 2008/09.

